Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 81(6): 1260-1275.e12, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561390

RESUMEN

DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.


Asunto(s)
Metilación de ADN , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Animales , Islas de CpG , Técnicas de Sustitución del Gen , Células HeLa , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Transgénicos , Mutación , Células 3T3 NIH , Neuronas/patología , Dominios Proteicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología
2.
Nucleic Acids Res ; 48(7): 3542-3552, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32064528

RESUMEN

MeCP2 is a nuclear protein that binds to sites of cytosine methylation in the genome. While most evidence confirms this epigenetic mark as the primary determinant of DNA binding, MeCP2 is also reported to have an affinity for non-methylated DNA sequences. Here we investigated the molecular basis and in vivo significance of its reported affinity for non-methylated GT-rich sequences. We confirmed this interaction with isolated domains of MeCP2 in vitro and defined a minimal target DNA sequence. Binding depends on pyrimidine 5' methyl groups provided by thymine and requires adjacent guanines and a correctly orientated A/T-rich flanking sequence. Unexpectedly, full-length MeCP2 protein failed to bind GT-rich sequences in vitro. To test for MeCP2 binding to these motifs in vivo, we analysed human neuronal cells using ChIP-seq and ATAC-seq technologies. While both methods robustly detected DNA methylation-dependent binding of MeCP2 to mCG and mCAC, neither showed evidence of MeCP2 binding to GT-rich motifs. The data suggest that GT binding is an in vitro phenomenon without in vivo relevance. Our findings argue that MeCP2 does not read unadorned DNA sequence and therefore support the notion that its primary role is to interpret epigenetic modifications of DNA.


Asunto(s)
ADN/química , ADN/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Sitios de Unión , Línea Celular , Citosina/metabolismo , Guanina/química , Humanos , Motivos de Nucleótidos , Unión Proteica , Timina/química
3.
PLoS Genet ; 13(5): e1006793, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28498846

RESUMEN

Mutations in the gene encoding the methyl-CG binding protein MeCP2 cause several neurological disorders including Rett syndrome. The di-nucleotide methyl-CG (mCG) is the classical MeCP2 DNA recognition sequence, but additional methylated sequence targets have been reported. Here we show by in vitro and in vivo analyses that MeCP2 binding to non-CG methylated sites in brain is largely confined to the tri-nucleotide sequence mCAC. MeCP2 binding to chromosomal DNA in mouse brain is proportional to mCAC + mCG density and unexpectedly defines large genomic domains within which transcription is sensitive to MeCP2 occupancy. Our results suggest that MeCP2 integrates patterns of mCAC and mCG in the brain to restrain transcription of genes critical for neuronal function.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN , Repeticiones de Dinucleótido , Proteína 2 de Unión a Metil-CpG/metabolismo , Repeticiones de Trinucleótidos , Animales , Islas de CpG , Citosina/metabolismo , Epigénesis Genética , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Síndrome de Rett/genética
4.
J Mol Biol ; 339(4): 937-49, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15165861

RESUMEN

Structural maintenance of chromosomes (SMC) proteins have diverse cellular functions including chromosome segregation, condensation and DNA repair. They are grouped based on a conserved set of distinct structural motifs. All SMC proteins are predicted to have a bipartite ATPase domain that is separated by a long region predicted to form a coiled coil. Recent structural data on a variety of SMC proteins shows them to be arranged as long intramolecular coiled coils with a globular ATPase at one end. SMC proteins function in pairs as heterodimers or as homodimers often in complexes with other proteins. We expect the arrangement of the SMC protein domains in complex assemblies to have important implications for their diverse functions. We used scanning force microscopy imaging to determine the architecture of human, Saccharomyces cerevisiae, and Pyrococcus furiosus Rad50/Mre11, Escherichia coli SbcCD, and S.cerevisiae SMC1/SMC3 cohesin SMC complexes. Two distinct architectural arrangements are described, based on the way their components were connected. The eukaryotic complexes were similar to each other and differed from their prokaryotic and archaeal homologs. These similarities and differences are discussed with respect to their diverse mechanistic roles in chromosome metabolism.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie
5.
Mol Cell ; 13(3): 307-16, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14967139

RESUMEN

A potentially lethal form of DNA/RNA modification, a cleavage complex, occurs when a nucleic acid-processing enzyme that acts via a transient covalent intermediate becomes trapped at its site of action. A number of overlapping pathways act to repair these lesions and many of the enzymes involved are those that catalyze recombinational-repair processes. A protein, Tdp1, has been identified that reverses cleavage-complex formation by specifically hydrolyzing a tyrosyl-DNA phosphodiester bond. The study of these pathways is both interesting and pertinent as they modulate the effectiveness of many antitumor/antibacterial drugs that act by stabilizing cleavage-complexes in vivo.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Hidrolasas Diéster Fosfóricas/genética , Animales , Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Humanos , Sustancias Macromoleculares , Conformación Molecular , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo
6.
DNA Repair (Amst) ; 2(7): 795-807, 2003 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-12826280

RESUMEN

SbcCD and other Mre11/Rad50 (MR) complexes are implicated in the metabolism of DNA ends. They cleave ends sealed by hairpin structures and have been postulated to play roles in removing protein bound to DNA termini. Here we provide direct evidence that the Escherichia coli MR complex (SbcCD) removes protein from a protein-bound DNA end by inserting a double-strand break (DSB). These observations indicate a more complex biochemical action than has been assumed previously and argue that this class of protein has the potential to play a direct role in deprotecting protein-bound DNA ends in vivo.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Exodesoxirribonucleasas/metabolismo , Exonucleasas/genética , Avidina , Biotina , Cromatografía en Capa Delgada , ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Exodesoxirribonucleasas/genética , Modelos Moleculares , Oligonucleótidos
7.
Drug Metab Dispos ; 30(12): 1357-63, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12433803

RESUMEN

The urinary excretion of metabolites of 2,3-benzofuran was studied in Sprague-Dawley rats (n = 5) given a single dose of 150 mg/kg i.p. Urine samples were collected at defined intervals up to 7 days postdose and analyzed using (1). H NMR and directly coupled high performance liquid chromatography (HPLC)-NMR, HPLC-(mass spectrometry) MS and HPLC-MS-NMR methods. The principal metabolites were determined to be 2-hydroxyphenylacetic acid and 2-(2-hydroxyethyl)phenyl hydrogen sulfate, representing 24.3 +/- 6.0% and 19.6 +/- 6.4% of the dose, respectively. This indicates that metabolism of benzofuran to the polar species excreted in urine involves cleavage of the furan ring.


Asunto(s)
Benzofuranos/análisis , Benzofuranos/metabolismo , Animales , Benzofuranos/química , Cromatografía Líquida de Alta Presión/métodos , Masculino , Espectrometría de Masas/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Ratas , Ratas Sprague-Dawley
8.
Trends Biochem Sci ; 27(8): 410-8, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12151226

RESUMEN

Mre11-Rad50 (MR) proteins are encoded by bacteriophage, eubacterial, archeabacterial and eukaryotic genomes, and form a complex with a remarkable protein architecture. This complex is capable of tethering the ends of DNA molecules, possesses a variety of DNA nuclease, helicase, ATPase and annealing activities, and performs a wide range of functions within cells. It is required for meiotic recombination, double-strand break repair, processing of mis-folded DNA structures and maintaining telomere length. This article reviews current knowledge of the structure and enzymatic activities of the MR complex and attempts to integrate biochemical information with the roles of the protein in a cell.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Evolución Molecular , Exodesoxirribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Proteína Homóloga de MRE11 , Datos de Secuencia Molecular , Conformación Proteica , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...