Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr Biochem ; 31: 77-87, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27133426

RESUMEN

Combination of dietary/herbal spice curcumin (Cur) and COX inhibitors has been tested for improving therapeutic efficacy in pancreatic cancer (PC). The objective of this study was to identify agent with low toxicity and COX-independent mechanism to induce PC cell growth inhibition when used along with Cur. Anticancer NSAID, tolfenamic acid (TA) and Cur combination were evaluated using PC cell lines. L3.6pl and MIA PaCa-2 cells were treated with Cur (5-25µM) or TA (25-100µM) or combination of Cur (7.5µM) and TA (50µM). Cell viability was measured at 24-72h posttreatment using CellTiter-Glo kit. While both agents showed a steady/consistent effect, Cur+TA caused higher growth inhibition. Antiproliferative effect was compared with COX inhibitors, Ibuprofen and Celebrex. Cardiotoxicity was assessed using cordiomyocytes (H9C2). The expression of Sp proteins, survivin and apoptotic markers (western blot), caspase 3/7 (caspase-Glo kit), Annexin-V staining (flow cytometry), reactive oxygen species (ROS) and cell cycle phase distribution (flow cytometry) was measured. Cells were treated with TNF-α, and NF-kB translocation from cytoplasm to nucleus was evaluated (immunofluorescence). When compared to individual agents, combination of Cur+TA caused significant increase in apoptotic markers, ROS levels and inhibited NF-kB translocation to nucleus. TA caused cell cycle arrest in G0/G1, and the combination treatment showed mostly DNA synthesis phase arrest. These results suggest that combination of Cur+TA is less toxic and effectively enhance the therapeutic efficacy in PC cells via COX-independent mechanisms.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Curcumina/administración & dosificación , FN-kappa B/metabolismo , Neoplasias Pancreáticas/patología , Factor de Transcripción Sp1/metabolismo , ortoaminobenzoatos/administración & dosificación , Línea Celular Tumoral , Humanos , Transporte de Proteínas
2.
Target Oncol ; 9(2): 135-44, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23609055

RESUMEN

Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to inhibit human cancer cells and mouse tumor growth in some cancer models; however, its anti-leukemic response has not been evaluated. TA targets specificity protein (Sp) transcription factors that mediate the expression of several genes associated with cancer including survivin, a key member of inhibitor of apoptosis protein family. Our aim was to test the anti-leukemic efficacy of TA in pre-clinical experiments. The anti-leukemic response of TA was determined using Jurkat and Nalm-6 cell lines. Cells were treated with increasing (25/50/75 µM) concentrations of TA, and cell viability was measured at 24, 48, and 72 h post-treatment. TA showed a steady and consistent decrease in cell viability following a clear dose and time dependent response. Apoptosis and cell cycle analysis was performed using flow cytometry. Results showed a significant increase in the apoptotic fraction (annexin V positive) following TA treatment, while cell cycle phase distribution analysis showed G0/G1 arrest. TA-induced apoptosis was further confirmed by examining the activation of caspase 3/7 and the expression of cleaved PARP. TA modulated the expression of critical candidates associated with the early phases of cell cycle and validated its efficacy in causing G0/G1 arrest. The Western blot results revealed that TA significantly decreases Sp1 and survivin expression. These results demonstrate that the anti-leukemic response of TA occurs potentially through targeting Sp1 and inhibiting survivin and suggest the efficacy of TA as a novel therapeutic agent for leukemia.


Asunto(s)
Antineoplásicos/farmacología , Leucemia/patología , ortoaminobenzoatos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Proteínas Inhibidoras de la Apoptosis/biosíntesis , Proteínas Inhibidoras de la Apoptosis/efectos de los fármacos , Leucemia/metabolismo , Survivin
3.
Cell Physiol Biochem ; 32(3): 675-86, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24030139

RESUMEN

BACKGROUND/AIMS: The small molecule, Tolfenamic acid (TA) has shown anti-cancer activity in pre-clinical models and is currently in Phase I clinical trials at MD Anderson Cancer Center Orlando. Since specificity and toxicity are major concerns for investigational agents, we tested the effect of TA on specific targets, and assessed the cellular and organismal toxicity representing pre-clinical studies in cancer. METHODS: Panc1, L3.6pl, and MiaPaCa-2 (pancreatic cancer), hTERT-HPNE(normal), and differentiated/un-differentiated SH-SY5Y (neuroblastoma) cells were treated with increasing concentrations of TA. Cell viability and effect on specific molecular targets, Sp1 and survivin were determined. Athymic nude mice were treated with vehicle or TA (50mg/kg, 3times/week for 6 weeks) and alterations in the growth pattern, hematocrit, and histopathology of gut, liver, and stomach were monitored. RESULTS: TA treatment decreased cell proliferation and inhibited the expression of Sp1 and survivin in cancer cells while only subtle response was observed in normal (hTERT-HPNE) and differentiated SH-SY5Y cells. Mice studies revealed no effect on body weight and hematocrit. Furthermore, TA regimen did not cause signs of internal-bleeding or damage to vital tissues in mice. CONCLUSION: These results demonstrate that TA selectively inhibits malignant cell growth acting on specific targets and its chronic treatment did not cause apparent toxicity in nude mice.


Asunto(s)
Antineoplásicos/toxicidad , Peso Corporal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , ortoaminobenzoatos/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Hematócrito , Proteínas Inhibidoras de la Apoptosis/metabolismo , Intestinos/patología , Hígado/patología , Ratones , Ratones Desnudos , Proteínas Represoras/metabolismo , Factor de Transcripción Sp1/metabolismo , Estómago/patología , Survivin
4.
Pancreas ; 42(5): 795-806, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23271399

RESUMEN

OBJECTIVES: Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. METHODS: SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. RESULTS: Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. CONCLUSIONS: These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.


Asunto(s)
Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Western Blotting , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Dasatinib , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Interferencia de ARN , Transducción de Señal/genética , Tiazoles/administración & dosificación , Tiazoles/farmacología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Vanadatos/administración & dosificación , Vanadatos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
5.
Integr Biol (Camb) ; 4(9): 1122-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22832660

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) play a significant role in the chemoprevention of cancer. We recently showed the chemopreventive response of a NSAID, 2-[(3-chloro-2-methylphenyl)amino]benzoic acid) known as tolfenamic acid (TA) in N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumors in rats. Pre-clinical studies showed that TA inhibits Specificity protein (Sp) transcription factors and acts as an anti-cancer agent in several cancer models; however the pertinent mechanisms associated with its chemopreventive response in esophageal cancer are not known. Since the bioactivation of carcinogens through cytochrome P450 (CYP) is critical for the induction of cancer, we have studied the effect of TA on critical CYP isozymes in mouse liver samples. Athymic nude mice were treated with vehicle (corn oil) or TA (50 mg kg(-1), 3 times per week) for 4 weeks. Protein extracts (whole cell lysates and microsomal fractions) were prepared from liver tissue and the expression of various CYP isozymes was determined by Western blot analysis. Rat (Sprague-Dawley) livers were harvested and primary hepatocyte cultures were treated with vehicle (DMSO) or TA (50 µM) and cell viability was assessed at 2 and 5 days post-treatment. TA caused remarkable decrease in the expression of CYP2E1 in both liver lysates and sub-cellular fraction, while its response on other tested isozymes was marginal. TA did not affect the body weight of animals (mice) and viability of rat hepatocytes. These results demonstrate that TA modulates the expression of CYP2E1 which is associated with the bioactivation of carcinogens without causing apparent toxicity. These data suggest that TA-induced inhibition of CYP2E1 attenuates the bioactivation of carcinogens potentially leading to the chemoprevention of NMBA-induced esophageal tumorigenesis in rats.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Inhibidores del Citocromo P-450 CYP2E1 , Citocromo P-450 CYP2E1/biosíntesis , Hígado/efectos de los fármacos , Hígado/enzimología , ortoaminobenzoatos/farmacología , Animales , Western Blotting , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Desnudos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Ratas , Ratas Sprague-Dawley
6.
Tumour Biol ; 33(5): 1265-74, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22614680

RESUMEN

The environment and dietary factors play an essential role in the etiology of cancer. Environmental component is implicated in ~80 % of all cancers; however, the causes for certain cancers are still unknown. The potential players associated with various cancers include chemicals, heavy metals, diet, radiation, and smoking. Lifestyle habits such as smoking and alcohol consumption, exposure to certain chemicals (e.g., polycyclic aromatic hydrocarbons, organochlorines), metals and pesticides also pose risk in causing human cancers. Several studies indicated a strong association of lung cancer with the exposure to tobacco products and asbestos. The contribution of excessive sunlight, radiation, occupational exposure (e.g., painting, coal, and certain metals) is also well established in cancer. Smoking, excessive alcohol intake, consumption of an unhealthy diet, and lack of physical activity can act as risk factors for cancer and also impact the prognosis. Even though the environmental disposition is linked to cancer, the level and duration of carcinogen-exposure and associated cellular and biochemical aspects determine the actual risk. Modulations in metabolism and DNA adduct formation are considered central mechanisms in environmental carcinogenesis. This review describes the major environmental contributors in causing cancer with an emphasis on molecular aspects associated with environmental disposition in carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias/etiología , Animales , Dioxinas/efectos adversos , Humanos , Metales/efectos adversos , Micotoxinas/efectos adversos , Plaguicidas/efectos adversos , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Fumar/efectos adversos , Compuestos Orgánicos Volátiles/efectos adversos
7.
Prostate ; 72(15): 1648-58, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22473873

RESUMEN

BACKGROUND: Specificity protein (Sp) transcription factors are implicated in critical cellular and molecular processes associated with cancer that impact tumor growth and metastasis. The non-steroidal anti-inflammatory drug, tolfenamic acid (TA) is known to inhibit Sp proteins in some human cancer cells and laboratory animal models. We evaluated the anti-cancer activity of TA using in vitro and in vivo models for prostate cancer. METHODS: The anti-proliferative efficacy of TA was evaluated using DU-145, PC-3, and LNCaP cells. PC-3 cells were treated with DMSO or 50 µM TA for 48 hr. Whole cell lysates were evaluated for the expression of Sp1, survivin, c-PARP, Akt/p-Akt, c-Met, cdk4, cdc2, cyclin D3, and E2F1 by Western blot analysis. Cell invasion was assessed by Boyden-chamber assay and flow cytometry analysis was used to study apoptosis and cell cycle distribution. An orthotopic mouse model for prostate cancer with PC-3-Luc cells was used to study the in vivo effect of TA. RESULTS: TA inhibited the expression of Sp1, c-Met, p-Akt, and survivin; increased c-PARP expression and caspases activity in PC-3 cells. TA caused cell arrest at G(0) /G(1) phase accompanied by a decrease in cdk4, cdc2, cyclin D3, and E2F1 and an increase in critical apoptotic markers. TA augmented annexin-V staining, caspase activity, and c-PARP expression indicating the activation of apoptotic pathways. TA also decreased PC-3 cell invasion. TA significantly decreased the tumor weight and volume which was associated with low expression of Sp1 and survivin in tumor sections. CONCLUSION: TA targets critical pathways associated with tumorigenesis and invasion. These pre-clinical data strongly demonstrated the anti-cancer activity of TA in prostate cancer.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , ortoaminobenzoatos/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Adhesión Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Carcinog ; 49(12): 1007-21, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20945416

RESUMEN

Despite an intense focus on novel therapeutic strategies, pancreatic adenocarcinoma remains one of the deadliest human malignancies. The frequent and rapid mortality associated with pancreatic cancer may be attributed to several factors, including late diagnosis, rapid tumor invasion into surrounding tissues, and formation of distant metastases. Both local invasion and metastasis require disruption of tumor cell contacts with the extracellular matrix. Detachment of normal cells from the extracellular matrix leads to a form of programmed cell death termed anoikis. Pancreatic cancer cells avert anoikis by activation of signaling pathways that allow for adhesion-independent survival. In the present studies, cellular signaling pathways activated in detached pancreatic cancer cells were examined. We demonstrate a rapid and robust activation of Src kinase in detached pancreatic cancer cells, relative to adherent. Src autophosphorylation rapidly returned to baseline levels upon reattachment to tissue culture plastic, in the presence or absence of specific extracellular matrix proteins. Treatment of pancreatic cancer cells with tyrosine phosphatase inhibitors increased steady-state Src autophosphorylation in adherent cells and abrogated the detachment-induced increase in Src autophosphorylation. Src was found to co-immunoprecipitate with the Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP-2) in pancreatic cancer cells, suggesting that SHP-2 may participate in regulation of Src autophosphorylation in adherent cells. Src family kinase (SFK) dependent increases in Akt and Jun N-terminal kinase (JNK) phosphorylation were observed in detached cells, indicating the potential for Src-dependent activation of survival and stress pathways in pancreatic cancer cells that have detached from the extracellular matrix.


Asunto(s)
Adenocarcinoma/enzimología , Neoplasias Pancreáticas/enzimología , Familia-src Quinasas/metabolismo , Anoicis , Adhesión Celular , Línea Celular Tumoral , Supervivencia Celular , Activación Enzimática , Proteínas de la Matriz Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , MAP Quinasa Quinasa 4/metabolismo , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA