Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunohorizons ; 8(2): 147-162, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345473

RESUMEN

Macrophages play a crucial role in eliminating respiratory pathogens. Both pulmonary resident alveolar macrophages (AMs) and recruited macrophages contribute to detecting, responding to, and resolving infections in the lungs. Despite their distinct functions, it remains unclear how these macrophage subsets regulate their responses to infection, including how activation by the cytokine IFN-γ is regulated. This shortcoming prevents the development of therapeutics that effectively target distinct lung macrophage populations without exacerbating inflammation. We aimed to better understand the transcriptional regulation of resting and IFN-γ-activated cells using a new ex vivo model of AMs from mice, fetal liver-derived alveolar-like macrophages (FLAMs), and immortalized bone marrow-derived macrophages. Our findings reveal that IFN-γ robustly activates both macrophage types; however, the profile of activated IFN-γ-stimulated genes varies greatly between these cell types. Notably, FLAMs show limited expression of costimulatory markers essential for T cell activation upon stimulation with only IFN-γ. To understand cell type-specific differences, we examined how the inhibition of the regulatory kinases GSK3α/ß alters the IFN-γ response. GSK3α/ß controlled distinct IFN-γ responses, and in AM-like cells, we found that GSK3α/ß restrained the induction of type I IFN and TNF, thus preventing the robust expression of costimulatory molecules and limiting CD4+ T cell activation. Together, these data suggest that the capacity of AMs to respond to IFN-γ is restricted in a GSK3α/ß-dependent manner and that IFN-γ responses differ across distinct macrophage populations. These findings lay the groundwork to identify new therapeutic targets that activate protective pulmonary responses without driving deleterious inflammation.


Asunto(s)
Linfocitos T CD4-Positivos , Macrófagos Alveolares , Ratones , Animales , Macrófagos Alveolares/metabolismo , Interferón gamma , Pulmón/metabolismo , Factores de Transcripción/metabolismo , Inflamación/metabolismo
2.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645748

RESUMEN

Macrophages play a crucial role in eliminating respiratory pathogens. Both pulmonary resident alveolar macrophages (AMs) and recruited macrophages contribute to detecting, responding to, and resolving infections in the lungs. Despite their distinct functions, it remains unclear how these macrophage subsets regulate their responses to infection, including how activation by the cytokine IFNγ is regulated. This shortcoming prevents the development of therapeutics that effectively target distinct lung macrophage populations without exacerbating inflammation. We aimed to better understand the transcriptional regulation of resting and IFNγ-activated cells using a new ex vivo model of AMs from mice, fetal liver-derived alveolar-like macrophages (FLAMs), and immortalized bone marrow-derived macrophages (iBMDMs). Our findings reveal that IFNγ robustly activates both macrophage types; however, the profile of activated IFNγ-stimulated genes varies greatly between these cell types. Notably, FLAMs show limited expression of costimulatory markers essential for T cell activation upon stimulation with only IFNγ. To understand cell type-specific differences, we examined how the inhibition of the regulatory kinases GSK3α/ß alters the IFNγ response. GSK3α/ß controlled distinct IFNγ responses, and in AM-like cells, we found GSK3α/ß restrained the induction of type I IFN and TNF, thus preventing the robust expression of costimulatory molecules and limiting CD4+ T cell activation. Together, these data suggest that the capacity of AMs to respond to IFNγ is restricted in a GSK3α/ß-dependent manner and that IFNγ responses differ across distinct macrophage populations. These findings lay the groundwork to identify new therapeutic targets that activate protective pulmonary responses without driving deleterious inflammation.

3.
Theranostics ; 13(7): 2057-2071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153742

RESUMEN

Purpose: TRA-1-60 (TRA) is an established transcription factor of embryonic signaling and a well-known marker of pluripotency. It has been implicated in tumorigenesis and metastases, is not expressed in differentiated cells, which makes it an appealing biomarker for immunopositron emission tomography (immunoPET) imaging and radiopharmaceutical therapy (RPT). Herein, we explored the clinical implications of TRA in prostate cancer (PCa), examined the potential of TRA-targeted PET to specifically image TRA+ cancer stem cells (CSCs) and assessed response to the selective ablation of PCa CSCs using TRA-targeted RPT. Experimental Design: First, we assessed the relationship between TRA (PODXL) copy number alterations (CNA) and survival using publicly available patient databases. The anti-TRA antibody, Bstrongomab, was radiolabeled with Zr-89 or Lu-177 for immunoPET imaging and RPT in PCa xenografts. Radiosensitive tissues were collected to assess radiotoxicity while excised tumors were examined for pathologic treatment response. Results: Patients with tumors having high PODXL CNA exhibited poorer progression-free survival than those with low PODXL, suggesting that it plays an important role in tumor aggressiveness. TRA-targeted immunoPET imaging specifically imaged CSCs in DU-145 xenografts. Tumors treated with TRA RPT exhibited delayed growth and decreased proliferative activity, marked by Ki-67 immunohistochemistry. Aside from minor weight loss in select animals, no significant signs of radiotoxicity were observed in the kidneys or livers. Conclusions: We successfully demonstrated the clinical significance of TRA expression in human PCa, engineered and tested radiotheranostic agents to image and treat TRA+ prostate CSCs. Ablation of TRA+ CSCs blunted PCa growth. Future studies combining CSC ablation with standard treatment will be explored to achieve durable responses.


Asunto(s)
Células Madre Pluripotentes , Neoplasias de la Próstata , Masculino , Animales , Humanos , Radioisótopos , Circonio , Tomografía Computarizada por Rayos X , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Radiofármacos , Células Madre Pluripotentes/metabolismo , Línea Celular Tumoral
4.
Placenta ; 128: 29-35, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36057170

RESUMEN

INTRODUCTION: Placental infection and inflammation are risk factors for adverse pregnancy outcomes, including preterm labor. However, the mechanisms underlying these outcomes are poorly understood. METHODS: To study this response, we have employed a pregnant mouse model of placental infection caused by the bacterial pathogen Listeria monocyogenes, which infects the human placenta. Through in vivo bioluminescence imaging, we confirm the presence of placental infection and quantify relative infection levels. Infected and control placentas were collected on embryonic day 18 for RNA sequencing to evaluate gene expression signatures associated with infection by Listeria. RESULTS: We identified an enrichment of genes associated with eicosanoid biosynthesis, suggesting an increase in eicosanoid production in infected tissues. Because of the known importance of eicosanoids in inflammation and timing of labor, we quantified eicosanoid levels in infected and uninfected placentas using semi-targeted mass spectrometry. We found a significant increase in the concentrations of several key eicosanoids: leukotriene B4, lipoxin A4, prostaglandin A2, prostaglandin D2, and eicosatrienoic acid. DISCUSSION: Our study provides a likely explanation for dysregulation of the timing of labor following placental infection. Further, our results suggest potential biomarkers of placental pathology and targets for clinical intervention.


Asunto(s)
Listeria monocytogenes , Listeriosis , Complicaciones Infecciosas del Embarazo , Animales , Biomarcadores/metabolismo , Femenino , Humanos , Recién Nacido , Inflamación/metabolismo , Leucotrieno B4/metabolismo , Listeriosis/complicaciones , Listeriosis/microbiología , Listeriosis/patología , Ratones , Placenta/metabolismo , Embarazo , Complicaciones Infecciosas del Embarazo/patología , Prostaglandina D2/metabolismo , Transcriptoma
5.
J Vis Exp ; (184)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35815999

RESUMEN

Identification and isolation of contagious individuals along with quarantine of close contacts, is critical for slowing the spread of COVID-19. Large-scale testing in a surveillance or screening capacity for asymptomatic carriers of COVID-19 provides both data on viral spread and the follow-up ability to rapidly test individuals during suspected outbreaks. The COVID-19 early detection program at Michigan State University has been utilizing large-scale testing in a surveillance or screening capacity since fall of 2020. The methods adapted here take advantage of the reliability, large sample volume, and self-collection benefits of saliva, paired with a cost-effective, reagent conserving two-dimensional pooling scheme. The process was designed to be adaptable to supply shortages, with many components of the kits and the assay easily substituted. The processes outlined for collecting and processing SARS-CoV-2 samples can be adapted to test for future viral pathogens reliably expressed in saliva. By providing this blueprint for universities or other organizations, preparedness plans for future viral outbreaks can be developed.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Reproducibilidad de los Resultados , Saliva , Manejo de Especímenes
6.
Microb Genom ; 8(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35904424

RESUMEN

Listeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis in immunocompromised individuals, particularly pregnant women. Several virulence factors support the intracellular lifecycle of Lm and facilitate cell-to-cell spread, allowing it to occupy multiple niches within the host and cross-protective barriers, including the placenta. One family of virulence factors, internalins, contributes to Lm pathogenicity by inducing specific uptake and conferring tissue tropism. Over 25 internalins have been identified thus far, but only a few have been extensively studied. Internalins contain leucine-rich repeat (LRR) domains that enable protein-protein interactions, allowing Lm to bind host proteins. Notably, other Listeria species express internalins but cannot colonize human hosts, prompting questions regarding the evolution of internalins within the genus Listeria. Internalin P (InlP) promotes placental colonization through interaction with the host protein afadin. Although prior studies of InlP have begun to elucidate its role in Lm pathogenesis, there remains a lack of information regarding homologs in other Listeria species. Here, we have used a computational evolutionary approach to identify InlP homologs in additional Listeria species. We found that Listeria ivanovii londoniensis (Liv) and Listeria seeligeri (Ls) encode InlP homologs. We also found InlP-like homologs in Listeria innocua and the recently identified species Listeria costaricensis. All newly identified homologs lack the full-length LRR6 and LRR7 domains found in Lm's InlP. These findings are informative regarding the evolution of one key Lm virulence factor, InlP, and serve as a springboard for future evolutionary studies of Lm pathogenesis as well as mechanistic studies of Listeria internalins.


Asunto(s)
Listeria monocytogenes , Listeria , Listeriosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Humanos , Listeria/genética , Listeria/metabolismo , Listeria monocytogenes/genética , Listeriosis/microbiología , Placenta/metabolismo , Placenta/microbiología , Embarazo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
7.
NAR Cancer ; 2(4): zcaa033, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33196045

RESUMEN

Identifying the mechanisms mediating cisplatin response is essential for improving patient response. Previous research has identified base excision repair (BER) and mismatch repair (MMR) activity in sensitizing cells to cisplatin. Cisplatin forms DNA adducts including interstrand cross-links (ICLs) that distort the DNA helix, forcing adjacent cytosines to become extrahelical. These extrahelical cytosines provide a substrate for cytosine deaminases. Herein, we show that APOBEC3 (A3) enzymes are capable of deaminating the extrahelical cytosines to uracils and sensitizing breast cancer cells to cisplatin. Knockdown of A3s results in resistance to cisplatin and induction of A3 expression in cells with low A3 expression increases sensitivity to cisplatin. We show that the actions of A3s are epistatic with BER and MMR. We propose that A3-induced cytosine deamination to uracil at cisplatin ICLs results in repair of uracils by BER, which blocks ICL DNA repair and enhances cisplatin efficacy and improves breast cancer outcomes.

8.
DNA Repair (Amst) ; 87: 102802, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31981740

RESUMEN

Human papillomavirus (HPV) is associated with the development of head and neck squamous cell carcinomas (HNSC). Cisplatin is used to treat HNSC and induces DNA adducts including interstrand crosslinks (ICLs). Previous reports have shown that HPV positive HNSC patients respond better to cisplatin therapy. Our previous reports highlight that loss of base excision repair (BER) and mismatch repair (MMR) results in cisplatin resistance. Of importance, uracil DNA glycosylase (UNG) is required to initiate the BER response to cisplatin treatment and maintain drug sensitivity. These previous results highlight that specific cytidine deaminases could play an important role in the cisplatin response by activating the BER pathway to mediate drug sensitivity. The APOBEC3 (A3) family of cytidine deaminases are enzymes that restrict HPV as part of the immune defense to viral infection. In this study, the Cancer Genome Atlas (TCGA) HNSC data were used to assess the association between the expression of the seven proteins in the A3 cytidine deaminase family, HPV-status and survival outcomes. Higher A3 G expression in HPV-positive tumors corresponds with better overall survival (OS) (HR 0.33, 95 % CI 0.11-0.93, p = 0.04). FaDu and Scc-25 HNSC cell lines were used to assess alterations in A3, BER and MMR expression in response to cisplatin. We demonstrate that A3, Polß, and MSH6 knockdown in HNSC cells results in resistance to cisplatin and carboplatin as well as an increase in the rate of ICL removal in FaDu and Scc-25 HNSC cells. Our results suggest that A3s activate BER in HNSC, mediate repair of cisplatin ICLs and thereby, sensitize cells to cisplatin which likely contributes to the improved patient responses observed in HPV infected patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/virología , Cisplatino/uso terapéutico , Citidina Desaminasa/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/virología , Papillomaviridae , Desaminasas APOBEC , Antineoplásicos/farmacología , Carboplatino/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Humanos , Oxaliplatino/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-31405862

RESUMEN

The Mycobacterium tuberculosis mycolate flippase MmpL3 has been the proposed target for multiple inhibitors with diverse chemical scaffolds. This diversity in chemical scaffolds has made it difficult to predict compounds that inhibit MmpL3 without whole-genome sequencing of isolated resistant mutants. Here, we describe the identification of four new inhibitors that select for resistance mutations in mmpL3. Using these resistant mutants, we conducted a targeted whole-cell phenotypic screen of 163 novel M. tuberculosis growth inhibitors for differential growth inhibition of wild-type M. tuberculosis compared to the growth of a pool of 24 unique mmpL3 mutants. The screen successfully identified six additional putative MmpL3 inhibitors. The compounds were bactericidal both in vitro and against intracellular M. tuberculosisM. tuberculosis cells treated with these compounds were shown to accumulate trehalose monomycolates, have reduced levels of trehalose dimycolate, and displace an MmpL3-specific probe, supporting MmpL3 as the target. The inhibitors were mycobacterium specific, with several also showing activity against the nontuberculous mycobacterial species M. abscessus Cluster analysis of cross-resistance profiles generated by dose-response experiments for each combination of 13 MmpL3 inhibitors against each of the 24 mmpL3 mutants defined two clades of inhibitors and two clades of mmpL3 mutants. Pairwise combination studies of the inhibitors revealed interactions that were specific to the clades identified in the cross-resistance profiling. Additionally, modeling of resistance-conferring substitutions to the MmpL3 crystal structure revealed clade-specific localization of the residues to specific domains of MmpL3, with the clades showing differential resistance. Several compounds exhibited high solubility and stability in microsomes and low cytotoxicity in macrophages, supporting their further development. The combined study of multiple mutants and novel compounds provides new insights into structure-function interactions of MmpL3 and small-molecule inhibitors.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Benzamidas/farmacología , Benzotiazoles/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Mycobacterium tuberculosis/efectos de los fármacos , Piridinas/farmacología , Antituberculosos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Benzamidas/síntesis química , Benzotiazoles/síntesis química , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Factores Cordón/antagonistas & inhibidores , Factores Cordón/biosíntesis , Factores Cordón/metabolismo , Farmacorresistencia Bacteriana/genética , Galactanos/metabolismo , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutación , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium abscessus/genética , Mycobacterium abscessus/crecimiento & desarrollo , Mycobacterium abscessus/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Piridinas/síntesis química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Secuenciación Completa del Genoma
10.
Nutrients ; 10(11)2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30400270

RESUMEN

The 5'-3' structure-specific endonuclease ERCC1/XPF (Excision Repair Cross-Complementation Group 1/Xeroderma Pigmentosum group F) plays critical roles in the repair of cisplatin-induced DNA damage. As such, it has been identified as a potential pharmacological target for enhancing clinical response to platinum-based chemotherapy. The goal of this study was to follow up on our previous identification of the compound NSC143099 as a potent inhibitor of ERCC1/XPF activity by performing an in silico screen to identify structural analogues that could inhibit ERCC1/XPF activity in vitro and in vivo. Using a fluorescence-based DNA-endonuclease incision assay, we identified the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) as a potent inhibitor of ERCC1/XPF activity with an IC50 (half maximal inhibitory concentration) in the nanomolar range in biochemical assays. Using DNA repair assays and clonogenic survival assays, we show that EGCG can inhibit DNA repair and enhance cisplatin sensitivity in human cancer cells. Finally, we show that a prodrug of EGCG, Pro-EGCG (EGCG octaacetate), can enhance response to platinum-based chemotherapy in vivo. Together these data support a novel target of EGCG in cancer cells, namely ERCC1/XPF. Our studies also corroborate previous observations that EGCG enhances sensitivity to cisplatin in multiple cancer types. Thus, EGCG or its prodrug makes an ideal candidate for further pharmacological development with the goal of enhancing cisplatin response in human tumors.


Asunto(s)
Catequina/análogos & derivados , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Polifenoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Catequina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayo Cometa , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos , Endonucleasas/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Platino (Metal)/farmacología , Profármacos/farmacología , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...