Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(1): 014712, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725567

RESUMEN

We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems, such as microwave superconducting quantum interference device multiplexers (µmux) or microwave kinetic inductance detectors. Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arrays of cryogenic sensors, which in turn necessitate highly multiplexed readout and accompanying room-temperature electronics. Microwave-frequency resonators are a popular tool for cryogenic multiplexing, with the potential to multiplex thousands of detector channels on one readout line. The SMuRF system provides the capability for reading out up to 3328 channels across a 4-8 GHz bandwidth. Notably, the SMuRF system is unique in its implementation of a closed-loop tone-tracking algorithm that minimizes RF power transmitted to the cold amplifier, substantially relaxing system linearity requirements and effective noise from intermodulation products. Here, we present a description of the hardware, firmware, and software systems of the SMuRF electronics, comparing achieved performance with science-driven design requirements. In particular, we focus on the case of large-channel-count, low-bandwidth applications, but the system has been easily reconfigured for high-bandwidth applications. The system described here has been successfully deployed in lab settings and field sites around the world and is baselined for use on upcoming large-scale observatories.

2.
Appl Opt ; 57(18): 5196-5209, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-30117982

RESUMEN

Although high-resistivity, low-loss silicon is an excellent material for terahertz transmission optics, its high refractive index necessitates an antireflection treatment. We fabricated a wide-bandwidth, two-layer antireflection treatment by cutting subwavelength structures into the silicon surface using multi-depth deep reactive-ion etching (DRIE). A wafer with this treatment on both sides has <-20 dB (<1%) reflectance over 187-317 GHz at a 15° angle of incidence in TE polarization. We also demonstrated that bonding wafers introduce no reflection features above the -20 dB level (also in TE at 15°), reproducing previous work. Together these developments immediately enable construction of wide-bandwidth silicon vacuum windows and represent two important steps toward gradient-index silicon optics with integral broadband antireflection treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...