Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Genome Biol ; 25(1): 37, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291503

RESUMEN

Sample multiplexing enables pooled analysis during single-cell RNA sequencing workflows, thereby increasing throughput and reducing batch effects. A challenge for all multiplexing techniques is to link sample-specific barcodes with cell-specific barcodes, then demultiplex sample identity post-sequencing. However, existing demultiplexing tools fail under many real-world conditions where barcode cross-contamination is an issue. We therefore developed deMULTIplex2, an algorithm inspired by a mechanistic model of barcode cross-contamination. deMULTIplex2 employs generalized linear models and expectation-maximization to probabilistically determine the sample identity of each cell. Benchmarking reveals superior performance across various experimental conditions, particularly on large or noisy datasets with unbalanced sample compositions.


Asunto(s)
Análisis de la Célula Individual , Análisis de Expresión Génica de una Sola Célula , Análisis de la Célula Individual/métodos , Algoritmos , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090649

RESUMEN

Single-cell sample multiplexing technologies function by associating sample-specific barcode tags with cell-specific barcode tags, thereby increasing sample throughput, reducing batch effects, and decreasing reagent costs. Computational methods must then correctly associate cell-tags with sample-tags, but their performance deteriorates rapidly when working with datasets that are large, have imbalanced cell numbers across samples, or are noisy due to cross-contamination among sample tags - unavoidable features of many real-world experiments. Here we introduce deMULTIplex2, a mechanism-guided classification algorithm for multiplexed scRNA-seq data that successfully recovers many more cells across a spectrum of challenging datasets compared to existing methods. deMULTIplex2 is built on a statistical model of tag read counts derived from the physical mechanism of tag cross-contamination. Using generalized linear models and expectation-maximization, deMULTIplex2 probabilistically infers the sample identity of each cell and classifies singlets with high accuracy. Using Randomized Quantile Residuals, we show the model fits both simulated and real datasets. Benchmarking analysis suggests that deMULTIplex2 outperforms existing algorithms, especially when handling large and noisy single-cell datasets or those with unbalanced sample compositions.

4.
J Neuroinflammation ; 19(1): 158, 2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35718775

RESUMEN

BACKGROUND: Immune activation, neuroinflammation, and cell death are the hallmarks of multiple sclerosis (MS), which is an autoimmune demyelinating disease of the central nervous system (CNS). It is well-documented that the cellular inhibitor of apoptosis 2 (cIAP2) is induced by inflammatory stimuli and regulates adaptive and innate immune responses, cell death, and the production of inflammatory mediators. However, the impact of cIAP2 on neuroinflammation associated with MS and disease severity remains unknown. METHODS: We used experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS, to assess the effect of cIAP2 deletion on disease outcomes. We performed a detailed analysis on the histological, cellular, and molecular levels. We generated and examined bone-marrow chimeras to identify the cIAP2-deficient cells that are critical to the disease outcomes. RESULTS: cIAP2-/- mice exhibited increased EAE severity, increased CD4+ T cell infiltration, enhanced proinflammatory cytokine/chemokine expression, and augmented demyelination. This phenotype was driven by cIAP2-deficient non-hematopoietic cells. cIAP2 protected oligodendrocytes from cell death during EAE by limiting proliferation and activation of brain microglia. This protective role was likely exerted by cIAP2-mediated inhibition of the non-canonical NLRP3/caspase-8-dependent myeloid cell activation during EAE. CONCLUSIONS: Our findings suggest that cIAP2 is needed to modulate neuroinflammation, cell death, and survival during EAE. Significantly, our data demonstrate the critical role of cIAP2 in limiting the activation of microglia during EAE, which could be explored for developing MS therapeutics in the future.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/genética , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Esclerosis Múltiple/patología , Enfermedades Neuroinflamatorias
5.
Genome Biol ; 22(1): 252, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465366

RESUMEN

Detecting multiplets in single nucleus (sn)ATAC-seq data is challenging due to data sparsity and limited dynamic range. AMULET (ATAC-seq MULtiplet Estimation Tool) enumerates regions with greater than two uniquely aligned reads across the genome to effectively detect multiplets. We evaluate the method by generating snATAC-seq data in the human blood and pancreatic islet samples. AMULET has high precision, estimated via donor-based multiplexing, and high recall, estimated via simulated multiplets, compared to alternatives and identifies multiplets most effectively when a certain read depth of 25K median valid reads per nucleus is achieved.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Programas Informáticos , Anciano , ADN/genética , Humanos , Leucocitos Mononucleares/metabolismo , Funciones de Verosimilitud , Transposasas/metabolismo
6.
Cell Stem Cell ; 28(6): 1090-1104.e6, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33915081

RESUMEN

The exocrine pancreas, consisting of ducts and acini, is the site of origin of pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Our understanding of the genesis and progression of human pancreatic diseases, including PDAC, is limited because of challenges in maintaining human acinar and ductal cells in culture. Here we report induction of human pluripotent stem cells toward pancreatic ductal and acinar organoids that recapitulate properties of the neonatal exocrine pancreas. Expression of the PDAC-associated oncogene GNASR201C induces cystic growth more effectively in ductal than acinar organoids, whereas KRASG12D is more effective in modeling cancer in vivo when expressed in acinar compared with ductal organoids. KRASG12D, but not GNASR201C, induces acinar-to-ductal metaplasia-like changes in culture and in vivo. We develop a renewable source of ductal and acinar organoids for modeling exocrine development and diseases and demonstrate lineage tropism and plasticity for oncogene action in the human pancreas.


Asunto(s)
Carcinoma Ductal Pancreático , Páncreas Exocrino , Neoplasias Pancreáticas , Células Acinares , Humanos , Recién Nacido , Oncogenes , Organoides , Páncreas , Neoplasias Pancreáticas/genética , Células Madre
7.
Proc Natl Acad Sci U S A ; 117(49): 31331-31342, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33214146

RESUMEN

Antigen-presenting conventional dendritic cells (cDCs) are broadly divided into type 1 and type 2 subsets that further adapt their phenotype and function to perform specialized tasks in the immune system. The precise signals controlling tissue-specific adaptation and differentiation of cDCs are currently poorly understood. We found that mice deficient in the Ste20 kinase Thousand and One Kinase 3 (TAOK3) lacked terminally differentiated ESAM+ CD4+ cDC2s in the spleen and failed to prime CD4+ T cells in response to allogeneic red-blood-cell transfusion. These NOTCH2- and ADAM10-dependent cDC2s were absent selectively in the spleen, but not in the intestine of Taok3-/- and CD11c-cre Taok3fl/fl mice. The loss of splenic ESAM+ cDC2s was cell-intrinsic and could be rescued by conditional overexpression of the constitutively active NOTCH intracellular domain in CD11c-expressing cells. Therefore, TAOK3 controls the terminal differentiation of NOTCH2-dependent splenic cDC2s.


Asunto(s)
Diferenciación Celular , Células Dendríticas/citología , Células Dendríticas/enzimología , Proteínas Quinasas/metabolismo , Receptor Notch2/metabolismo , Bazo/citología , Animales , Antígenos CD/metabolismo , Linfocitos T CD4-Positivos/inmunología , Regulación de la Expresión Génica , Intestino Delgado/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Dominios Proteicos , Proteínas Quinasas/deficiencia , Receptor Notch2/química , Transducción de Señal
9.
Biochem Biophys Rep ; 24: 100803, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32984557

RESUMEN

The role of the inducible costimulatory of T cells (ICOS) has been shown to be important for many different T cell outcomes and is indispensable for follicular helper T cell (TFH) responses. Since its discovery, there have been several studies on the regulation of ICOS at a transcriptional level. However, the post-translational regulation of ICOS has not been well characterized. Here, we demonstrate that ICOS is internalized following ligation. We show that costimulation with CD3 results in differential internalization and fate than stimulation of ICOS alone. Additionally, we show that ICOS internalization is PI3K and clathrin mediated. The studies presented here not only increase the mechanistic understanding of ICOS post-translational regulation but also give insight into the potential mechanisms by which T cells expressing high affinity receptors may be preferentially chosen to become TFH cells with increased ICOS levels.

10.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32661123

RESUMEN

Anaplasma phagocytophilum causes granulocytic anaplasmosis, a debilitating infection that can be fatal in the immunocompromised. It also afflicts animals, including dogs, horses, and sheep. No granulocytic anaplasmosis vaccine exists. Because A. phagocytophilum is an obligate intracellular bacterium, inhibiting microbe-host cell interactions that facilitate invasion can disrupt infection. The binding domains of A. phagocytophilum adhesins A. phagocytophilum invasion protein A (AipA), A. phagocytophilum surface protein (Asp14), and outer membrane protein A (OmpA) are essential for optimal bacterial entry into host cells, but their relevance to infection in vivo is undefined. In this study, C57BL/6 mice were immunized with a cocktail of keyhole limpet hemocyanin-conjugated peptides corresponding to the AipA, Asp14, and OmpA binding domains in alum followed by challenge with A. phagocytophilum The bacterial peripheral blood burden was pronouncedly reduced in immunized mice compared to controls. Examination of pre- and postchallenge sera from these mice revealed that immunization elicited antibodies against AipA and Asp14 peptides but not OmpA peptide. Nonetheless, pooled sera from pre- and postchallenge groups, but not from control groups, inhibited A. phagocytophilum infection of HL-60 cells. Adhesin domain immunization also elicited interferon gamma (IFN-γ)-producing CD8-positive (CD8+) T cells. A follow-up study confirmed that immunization against only the AipA or Asp14 binding domain was sufficient to reduce the bacterial peripheral blood load in mice following challenge and elicit antibodies that inhibit A. phagocytophilum cellular infection in vitro These data demonstrate that AipA and Asp14 are critical for A. phagocytophilum to productively infect mice, and immunization against their binding domains elicits a protective immune response.


Asunto(s)
Adhesinas Bacterianas/inmunología , Anaplasma phagocytophilum/inmunología , Vacunas Bacterianas/inmunología , Ehrlichiosis/prevención & control , Adhesinas Bacterianas/química , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Anticuerpos Bloqueadores/sangre , Anticuerpos Bloqueadores/inmunología , Carga Bacteriana , Vacunas Bacterianas/administración & dosificación , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Células HL-60 , Humanos , Inmunización , Interferón gamma/inmunología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Dominios Proteicos/inmunología , Vacunas Conjugadas/administración & dosificación , Vacunas Conjugadas/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
11.
BMC Immunol ; 21(1): 8, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32106810

RESUMEN

BACKGROUND: Myeloid derived suppressor cells (MDSCs) present a significant obstacle to cancer immunotherapy because they dampen anti-tumor cytotoxic T cell responses. Previous groups, including our own, have reported on the myelo-depletive effects of certain chemotherapy agents. We have shown previously that decitabine increased tumor cell Class I and tumor antigen expression, increased ability of tumor cells to stimulate T lymphocytes, depleted tumor-induced MDSC in vivo and augmented immunotherapy of a murine mammary carcinoma. RESULTS: In this study, we expand upon this observation by testing a next-generation DNA methyltransferase inhibitor (DNMTi), guadecitabine, which has increased stability in the circulation. Using the 4 T1 murine mammary carcinoma model, in BALB/cJ female mice, we found that guadecitabine significantly reduces tumor burden in a T cell-dependent manner by preventing excessive myeloid proliferation and systemic accumulation of MDSC. The remaining MDSC were shifted to an antigen-presenting phenotype. Building upon our previous publication, we show that guadecitabine enhances the therapeutic effect of adoptively transferred antigen-experienced lymphocytes to diminish tumor growth and improve overall survival. We also show guadecitabine's versatility with similar tumor reduction and augmentation of immunotherapy in the C57BL/6 J E0771 murine breast cancer model. CONCLUSIONS: Guadecitabine depleted and altered MDSC, inhibited growth of two different murine mammary carcinomas in vivo, and augmented immunotherapeutic efficacy. Based on these findings, we believe the immune-modulatory effects of guadecitabine can help rescue anti-tumor immune response and contribute to the overall effectiveness of current cancer immunotherapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Azacitidina/análogos & derivados , Neoplasias de la Mama/terapia , Inmunoterapia Adoptiva/métodos , Células Supresoras de Origen Mieloide/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Azacitidina/uso terapéutico , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Terapia Combinada , Metilasas de Modificación del ADN/antagonistas & inhibidores , Femenino , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mielopoyesis/efectos de los fármacos
12.
mBio ; 11(1)2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992623

RESUMEN

Diverse intracellular pathogens rely on eukaryotic cell surface disulfide reductases to invade host cells. Pharmacologic inhibition of these enzymes is cytotoxic, making it impractical for treatment. Identifying and mechanistically dissecting microbial proteins that co-opt surface reductases could reveal novel targets for disrupting this common infection strategy. Anaplasma phagocytophilum invades neutrophils by an incompletely defined mechanism to cause the potentially fatal disease granulocytic anaplasmosis. The bacterium's adhesin, Asp14, contributes to invasion by virtue of its C terminus engaging an unknown receptor. Yeast-two hybrid analysis identified protein disulfide isomerase (PDI) as an Asp14 binding partner. Coimmunoprecipitation confirmed the interaction and validated it to be Asp14 C terminus dependent. PDI knockdown and antibody-mediated inhibition of PDI reductase activity impaired A. phagocytophilum infection of but not binding to host cells. Infection during PDI inhibition was rescued when the bacterial but not host cell surface disulfide bonds were chemically reduced with tris(2-carboxyethyl)phosphine-HCl (TCEP). TCEP also restored bacterial infectivity in the presence of an Asp14 C terminus blocking antibody that otherwise inhibits infection. A. phagocytophilum failed to productively infect myeloid-specific-PDI conditional-knockout mice, marking the first demonstration of in vivo microbial dependency on PDI for infection. Mutational analyses identified the Asp14 C-terminal residues that are critical for binding PDI. Thus, Asp14 binds and brings PDI proximal to A. phagocytophilum surface disulfide bonds that it reduces, which enables cellular and in vivo infection.IMPORTANCEAnaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging potentially fatal disease and the second-most common tick-borne illness in the United States. Treatment options are limited, and no vaccine exists. Due to the bacterium's obligatory intracellular lifestyle, A. phagocytophilum survival and pathogenesis are predicated on its ability to enter host cells. Understanding its invasion mechanism will yield new targets for preventing bacterial entry and, hence, disease. We report a novel entry pathway in which the A. phagocytophilum outer membrane protein Asp14 binds host cell surface protein disulfide isomerase via specific C-terminal residues to promote reduction of bacterial surface disulfide bonds, which is critical for cellular invasion and productive infection in vivo Targeting the Asp14 C terminus could be used to prevent/treat granulocytic anaplasmosis. Our findings have broad implications, as a thematically similar approach could be applied to block infection by other intracellular microbes that exploit cell surface reductases.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Anaplasma phagocytophilum/fisiología , Ehrlichiosis/metabolismo , Ehrlichiosis/microbiología , Interacciones Huésped-Patógeno , Proteína Disulfuro Isomerasas/metabolismo , Adhesinas Bacterianas/química , Animales , Modelos Animales de Enfermedad , Activación Enzimática , Humanos , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Tiorredoxinas/metabolismo
13.
J Immunol ; 203(5): 1111-1121, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31350354

RESUMEN

IL-9 is an important mediator of allergic disease that is critical for mast cell-driven diseases. IL-9 is produced by many cell types, including T cells, basophils, and mast cells. Yet, how IL-9 is regulated in mast cells or basophils is not well characterized. In this report, we tested the effects of deficiency of a mouse Il9 gene regulatory element (Il9 CNS-25) in these cells in vivo and in vitro. In mast cells stimulated with IL-3 and IL-33, the Il9 CNS-25 enhancer is a potent regulator of mast cell Il9 gene transcription and epigenetic modification at the Il9 locus. Our data show preferential binding of STAT5 and GATA1 to CNS-25 over the Il9 promoter in mast cells and that T cells and mast cells have differing requirements for the induction of IL-9 production. Il9 CNS-25 is required for IL-9 production from T cells, basophils, and mast cells in a food allergy model, and deficiency in IL-9 expression results in decreased mast cell expansion. In a Nippostrongylus brasiliensis infection model, we observed a similar decrease in mast cell accumulation. Although decreased mast cells correlated with higher parasite egg burden and delayed clearance in vivo, T cell deficiency in IL-9 also likely contributes to the phenotype. Thus, our data demonstrate IL-9 production in mast cells and basophils in vivo requires Il9 CNS-25, and that Il9 CNS-25-dependent IL-9 production is required for mast cell expansion during allergic intestinal inflammation.


Asunto(s)
Basófilos/inmunología , Genes Reguladores , Interleucina-9/genética , Mastocitos/inmunología , Animales , Femenino , Hipersensibilidad a los Alimentos/inmunología , Helmintiasis/inmunología , Interleucina-9/biosíntesis , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
14.
Nat Methods ; 16(7): 619-626, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209384

RESUMEN

Sample multiplexing facilitates scRNA-seq by reducing costs and identifying artifacts such as cell doublets. However, universal and scalable sample barcoding strategies have not been described. We therefore developed MULTI-seq: multiplexing using lipid-tagged indices for single-cell and single-nucleus RNA sequencing. MULTI-seq reagents can barcode any cell type or nucleus from any species with an accessible plasma membrane. The method involves minimal sample processing, thereby preserving cell viability and endogenous gene expression patterns. When cells are classified into sample groups using MULTI-seq barcode abundances, data quality is improved through doublet identification and recovery of cells with low RNA content that would otherwise be discarded by standard quality-control workflows. We use MULTI-seq to track the dynamics of T-cell activation, perform a 96-plex perturbation experiment with primary human mammary epithelial cells and multiplex cryopreserved tumors and metastatic sites isolated from a patient-derived xenograft mouse model of triple-negative breast cancer.


Asunto(s)
Lípidos/química , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Secuencia de Bases , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
15.
F1000Res ; 82019.
Artículo en Inglés | MEDLINE | ID: mdl-31168357

RESUMEN

Immunoglobulin E (IgE), though constitutively present at low levels, is most commonly studied in atopic disease where it plays a vital role in mast cell degranulation and in initiating a T helper 2 (Th2) response. With the advent of better detection assays, however, researchers are discovering the importance of IgE in actively contributing to many disease states and pathologies. This review will discuss the latest findings in IgE beyond its role in allergies and recently discovered roles for IgE in its cell-bound form on FcεRI-expressing effector cells like monocytes and dendritic cells. In terms of parasites, we will discuss helminth-induced IgE that appears to protect the worms from immune recognition and a tick-borne illness that elicits an IgE response against red meat. Next, we describe recent findings of how auto-reactive IgE can contribute to the progression of lupus and induce organ damage. Finally, we summarize the emerging roles of IgE in tumor surveillance and antibody-dependent cytotoxicity. We additionally discuss recent or ongoing clinical trials that either target harmful IgE or use the unique characteristics of the isotype.


Asunto(s)
Inmunoglobulina E/inmunología , Receptores de IgE/inmunología , Animales , Degranulación de la Célula , Células Dendríticas/inmunología , Helmintos , Humanos , Hipersensibilidad/inmunología , Mastocitos/inmunología , Monocitos/inmunología , Células Th2/inmunología
16.
Biochem Biophys Res Commun ; 512(4): 723-728, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30926166

RESUMEN

Group 2 innate lymphoid cells (ILC2s) play an important role in the initiation of type-2 immune responses. Numerous targets have been identified that may activate or repress ILC2 function, though few negative regulatory feedback pathways induced upon activation have been shown to be operative in ILC2s. Here we demonstrate that loss of ADAM17 from ILC2s results in a selective defect in IL-33 responsiveness, but not IL-25 responsiveness. We find that IL1R2 is significantly upregulated at both the transcript and protein level in IL-33 activated ILC2s. We are also able to demonstrate that ADAM17 regulates IL1R2 levels on ILC2s in both a constitutive and activation induced manner. Additionally, IL1R2+ ILC2s, a unique subset of ILC2s, have decreased Il5 and Il13 transcripts following IL-33 stimulation. Overall, these data suggest that the expression of IL1R2 may act as an activation-induced negative regulatory feedback mechanism to decrease ILC2 responsiveness to IL-33.


Asunto(s)
Proteína ADAM17/inmunología , Interleucina-33/inmunología , Linfocitos/inmunología , Proteína ADAM17/genética , Animales , Células Cultivadas , Eliminación de Gen , Inmunidad Innata , Linfocitos/metabolismo , Ratones Endogámicos C57BL
17.
Life Sci Alliance ; 2(2)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30902833

RESUMEN

Intracellular bacteria that live in host cell-derived vacuoles are significant causes of human disease. Parasitism of low-density lipoprotein (LDL) cholesterol is essential for many vacuole-adapted bacteria. Acid sphingomyelinase (ASM) influences LDL cholesterol egress from the lysosome. Using functional inhibitors of ASM (FIASMAs), we show that ASM activity is key for infection cycles of vacuole-adapted bacteria that target cholesterol trafficking-Anaplasma phagocytophilum, Coxiella burnetii, Chlamydia trachomatis, and Chlamydia pneumoniae. Vacuole maturation, replication, and infectious progeny generation by A. phagocytophilum, which exclusively hijacks LDL cholesterol, are halted and C. burnetii, for which lysosomal cholesterol accumulation is bactericidal, is killed by FIASMAs. Infection cycles of Chlamydiae, which hijack LDL cholesterol and other lipid sources, are suppressed but less so than A. phagocytophilum or C. burnetii A. phagocytophilum fails to productively infect ASM-/- or FIASMA-treated mice. These findings establish the importance of ASM for infection by intracellular bacteria and identify FIASMAs as potential host-directed therapies for diseases caused by pathogens that manipulate LDL cholesterol.


Asunto(s)
Desipramina/farmacología , Inhibidores Enzimáticos/farmacología , Bacterias Gramnegativas/patogenicidad , Infecciones por Bacterias Gramnegativas/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo , Animales , LDL-Colesterol/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Células HeLa , Voluntarios Sanos , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/microbiología , Transducción de Señal/efectos de los fármacos , Esfingomielina Fosfodiesterasa/genética , Células THP-1 , Vacuolas/metabolismo , Vacuolas/microbiología
18.
J Immunol ; 202(3): 664-674, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30610163

RESUMEN

The role of ICOS and its ligand (ICOSL) have both been shown to be essential for proper humoral responses as well as autoimmune Ab development in mouse models of lupus. In this paper, we report a specific role for the metalloprotease ADAM10 on B cells in regulating both ICOSL and ICOS in a mouse model of increased humoral immunity using B6mir146a-/- mice and a model of lymphoproliferative disease using the well-characterized lpr model. B6lpr mice lacking ADAM10 on B cells (A10Blpr) have decreased nodal proliferation and T cell accumulation compared with control B6lpr mice. Additionally, A10Blpr mice have a drastic reduction in autoimmune anti-dsDNA Ab production. In line with this, we found a significant reduction in follicular helper T cells and germinal center B cells in these mice. We also show that lymphoproliferation in this model is closely tied to elevated ICOS levels and decreased ICOSL levels. Overall, our data not only show a role of B cell ADAM10 in control autoimmunity but also increase our understanding of the regulation of ICOS and ICOSL in the context of autoimmunity.


Asunto(s)
Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Linfocitos B/inmunología , Inmunidad Humoral , Ligando Coestimulador de Linfocitos T Inducibles/genética , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Lupus Eritematoso Sistémico/inmunología , Proteínas de la Membrana/genética , Proteína ADAM10/inmunología , Secretasas de la Proteína Precursora del Amiloide/inmunología , Animales , Autoanticuerpos/sangre , Autoinmunidad , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , MicroARNs/genética
19.
Infect Immun ; 87(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30559222

RESUMEN

Orientia tsutsugamushi is an obligate intracellular bacterium that infects mononuclear and endothelial cells to cause the emerging global health threat scrub typhus. The ability of O. tsutsugamushi to survive in monocytes facilitates bacterial dissemination to endothelial cells, which can subsequently lead to several potentially fatal sequelae. As a strict intracellular pathogen that lives in the cytoplasm of host cells, O. tsutsugamushi has evolved to counter adaptive immunity. How the pathogen does so and the outcome of this strategy in monocytes versus endothelial cells are poorly understood. This report demonstrates that O. tsutsugamushi reduces cellular levels of NOD-, LRR-, and CARD-containing 5 (NLRC5), a recently identified specific transactivator of major histocompatibility complex class I (MHC-I) component gene expression, to inhibit MHC-I biosynthesis. Importantly, the efficacy of this approach varies with the host cell type infected. In nonprofessional antigen-presenting HeLa and primary human aortic endothelial cells, the O. tsutsugamushi-mediated reduction of NLRC5 results in lowered MHC-I component transcription and, consequently, lower total and/or surface MHC-I levels throughout 72 h of infection. However, in infected THP-1 monocytes, which are professional antigen-presenting cells, the reductions in NLRC5 and MHC-I observed during the first 24 h reverse thereafter. O. tsutsugamushi is the first example of a microbe that targets NLRC5 to modulate the MHC-I pathway. The differential ability of O. tsutsugamushi to modulate this pathway in nonprofessional versus professional antigen-presenting cells could influence morbidity and mortality from scrub typhus.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Genes MHC Clase I/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Orientia tsutsugamushi , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...