Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 82019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31573513

RESUMEN

The Drosophila Fog pathway represents one of the best-understood signaling cascades controlling epithelial morphogenesis. During gastrulation, Fog induces apical cell constrictions that drive the invagination of mesoderm and posterior gut primordia. The cellular mechanisms underlying primordia internalization vary greatly among insects and recent work has suggested that Fog signaling is specific to the fast mode of gastrulation found in some flies. On the contrary, here we show in the beetle Tribolium, whose development is broadly representative for insects, that Fog has multiple morphogenetic functions. It modulates mesoderm internalization and controls a massive posterior infolding involved in gut and extraembryonic development. In addition, Fog signaling affects blastoderm cellularization, primordial germ cell positioning, and cuboidal-to-squamous cell shape transitions in the extraembryonic serosa. Comparative analyses with two other distantly related insect species reveals that Fog's role during cellularization is widely conserved and therefore might represent the ancestral function of the pathway.


Asunto(s)
Epitelio/embriología , Epitelio/metabolismo , Proteínas de Insectos/metabolismo , Transducción de Señal , Tribolium/metabolismo , Animales , Animales Modificados Genéticamente , Blastodermo/embriología , Blastodermo/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Endocitosis , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Insectos/genética , Mesodermo/embriología , Mesodermo/metabolismo , Morfogénesis , Fenotipo , Tribolium/embriología
2.
PLoS One ; 11(12): e0167431, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907180

RESUMEN

Despite recent efforts to sample broadly across metazoan and insect diversity, current sequence resources in the Coleoptera do not adequately describe the diversity of the clade. Here we present deep, staged transcriptomic data for two coleopteran species, Atrachya menetriesi (Faldermann 1835) and Callosobruchus maculatus (Fabricius 1775). Our sampling covered key stages in ovary and early embryonic development in each species. We utilized this data to build combined assemblies for each species which were then analysed in detail. The combined A. menetriesi assembly consists of 228,096 contigs with an N50 of 1,598 bp, while the combined C. maculatus assembly consists of 128,837 contigs with an N50 of 2,263 bp. For these assemblies, 34.6% and 32.4% of contigs were identified using Blast2GO, and 97% and 98.3% of the BUSCO set of metazoan orthologs were present, respectively. We also carried out manual annotation of developmental signalling pathways and found that nearly all expected genes were present in each transcriptome. Our analyses show that both transcriptomes are of high quality. Lastly, we performed read mapping utilising our timed, stage specific RNA samples to identify differentially expressed contigs. The resources presented here will provide a firm basis for a variety of experimentation, both in developmental biology and in comparative genomic studies.


Asunto(s)
Escarabajos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma/genética , Animales , Escarabajos/clasificación , Perfilación de la Expresión Génica , Genómica , Anotación de Secuencia Molecular , Transducción de Señal
3.
Curr Biol ; 26(12): 1609-1615, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27212406

RESUMEN

One of the key morphogenetic processes used during development is the controlled intercalation of cells between their neighbors. This process has been co-opted into a range of developmental events, and it also underlies an event that occurs in each major group of bilaterians: elongation of the embryo along the anterior-posterior axis [1]. In Drosophila, a novel component of this process was recently discovered by Paré et al., who showed that three Toll genes function together to drive cell intercalation during germband extension [2]. This finding raises the question of whether this role of Toll genes is an evolutionary novelty of flies or a general mechanism of embryonic morphogenesis. Here we show that the Toll gene function in axis elongation is, in fact, widely conserved among arthropods. First, we functionally demonstrate that two Toll genes are required for cell intercalation in the beetle Tribolium castaneum. We then show that these genes belong to a previously undescribed Toll subfamily and that members of this subfamily exhibit striped expression (as seen in Tribolium and previously reported in Drosophila [3-5]) in embryos of six other arthropod species spanning the entire phylum. Last, we show that two of these Toll genes are required for normal morphogenesis during anterior-posterior embryo elongation in the spider Parasteatoda tepidariorum, a member of the most basally branching arthropod lineage. From our findings, we hypothesize that Toll genes had a morphogenetic function in embryo elongation in the last common ancestor of all arthropods, which existed over 550 million years ago.


Asunto(s)
Proteínas de Insectos/genética , Morfogénesis , Arañas/genética , Receptores Toll-Like/genética , Tribolium/genética , Anfípodos/embriología , Anfípodos/genética , Animales , Drosophila , Arañas/embriología , Tribolium/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...