Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37630227

RESUMEN

Crocus sativus L. is largely cultivated because it is the source of saffron, a well-appreciated and valued spice, not only for its culinary use but also because of its significant biological activities. Stigmas are the main product obtained from flowers, but in addition, tepals, largely considered a waste product, represent a big source of flavonoids and anthocyanins. This study aimed to delve into the phytochemical composition of saffron tepals and investigate whether the composition was influenced by the extraction technique while investigating the main analytical techniques most suitable for the characterization of tepal extracts. The research focuses on flavonoids, a class of secondary metabolites, and their health benefits, including antioxidant, anti-inflammatory, and anticancer properties. Flavonoids occur as aglycones and glycosides and are classified into various classes, such as flavones, flavonols, and flavanones. The most abundant flavonoids in tepals are kaempferol glycosides, followed by quercetin and isorhamnetin glycosides. Overall, this review provides valuable insights into the potential uses of tepals as a source of bioactive compounds and their applications in various fields, promoting a circular and sustainable economy in saffron cultivation and processing.


Asunto(s)
Productos Biológicos , Crocus , Antocianinas , Flavonoides , Especias , Glicósidos , Colorantes
2.
Molecules ; 28(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37375419

RESUMEN

In recent years, fermented foods have attracted increasing attention due to their important role in the human diet, since they supply beneficial health effects, providing important sources of nutrients. In this respect, a comprehensive characterization of the metabolite content in fermented foods is required to achieve a complete vision of physiological, microbiological, and functional traits. In the present preliminary study, the NMR-based metabolomic approach combined with chemometrics has been applied, for the first time, to investigate the metabolite content of Phaseolus vulgaris flour fermented by different lactic acid bacteria (LAB) and yeasts. A differentiation of microorganisms (LAB and yeasts), LAB metabolism (homo- and heterofermentative hexose fermentation), LAB genus (Lactobacillus, Leuconostoc, and Pediococcus), and novel genera (Lacticaseibacillus, Lactiplantibacillus, and Lentilactobacillus) was achieved. Moreover, our findings showed an increase of free amino acids and bioactive molecules, such as GABA, and a degradation of anti-nutritional compounds, such as raffinose and stachyose, confirming the beneficial effects of fermentation processes and the potential use of fermented flours in the production of healthy baking foods. Finally, among all microorganisms considered, the Lactiplantibacillus plantarum species was found to be the most effective in fermenting bean flour, as a larger amount of free amino acids were assessed in their analysis, denoting more intensive proteolytic activity.


Asunto(s)
Lactobacillales , Phaseolus , Humanos , Lactobacillales/metabolismo , Harina/microbiología , Phaseolus/metabolismo , Fermentación , Pediococcus/metabolismo , Aminoácidos/metabolismo , Microbiología de Alimentos , Levaduras/metabolismo
3.
J Anat ; 243(2): 265-273, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778985

RESUMEN

Saffron is an ancient spice largely used in traditional medicine. It has been found to be effective in treatment of retinal neurodegenerative diseases like age-related macular degeneration and Stargardt. In the present manuscript, it is shown that saffron's neuroprotective power is strongly related to the bioactivity of all its chemical components. Nuclear magnetic resonance spectroscopy and "in vitro" experiments confirm the relevance of crocins for saffron efficacy. These results underline the importance of strictly defining the chemical composition of the natural compounds in saffron to optimize their effectiveness in the treatment of diseases.


Asunto(s)
Crocus , Enfermedades Neurodegenerativas , Crocus/química , Enfermedades Neurodegenerativas/tratamiento farmacológico
4.
ACS Appl Polym Mater ; 4(10): 7191-7203, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277172

RESUMEN

The introduction of inorganic materials into biopolymers has been envisioned as a viable option to modify the optical and structural properties of these polymers and promote their exploitation in different application fields. In this work, the growth of Al2O3 in freestanding ∼30-µm-thick poly(butylene succinate) (PBS) films by sequential infiltration (SIS) at 70 °C via trimethylaluminum (TMA) and H2O precursors was investigated for the first time. The incorporation of Al2O3 into the PBS matrix was clearly demonstrated by XPS analysis and SEM-EDX cross-sectional images showing a homogeneous Al2O3 distribution inside the PBS films. Raman measurements on infiltrated freestanding PBS show a reduction of the signal related to the ester carbonyl group as compared to pristine freestanding PBS films. Accordingly, FTIR and NMR characterization highlighted that the ester group is involved in polymer-precursor interaction, leading to the formation of an aliphatic group and the concomitant rupture of the main polymeric chain. Al2O3 mass uptake as a function of the number of SIS cycles was studied by infiltration in thin PBS films spin-coated on Si substrates ranging from 30 to 70 nm. Mass uptake in the PBS films was found to be much higher than in standard poly(methyl methacrylate) (PMMA) films, under the same process conditions. Considering that the density of reactive sites in the two polymers is roughly the same, the observed difference in Al2O3 mass uptake is explained based on the different free volume of these polymers and the specific reaction mechanism proposed for PBS. These results assessed the possibility to use SIS as a tool for the growth of metal oxides into biopolymers, paving the way to the synthesis of organic-inorganic hybrid materials with tailored characteristics.

5.
Antioxidants (Basel) ; 11(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36009248

RESUMEN

Plants synthesize specific secondary metabolites for survival, reproduction, environmental resilience, and defense. Among them, lignans are a class of polyphenols with several bioactive properties: chemopreventive, anti-inflammatory, antiviral, and antioxidant. These compounds are often extracted from field-grown plants with very low yields. To overcome these constraints, in vitro tissue cultures provide a tool to optimize large-scale production. Moreover, the use of elicitation to increase secondary metabolite production is gaining importance. The aim of this work was to develop adventitious (ARL) and hairy roots (HRL) from Linum lewisi, a species able to synthesize arylnaphthalene lignans such as justicidin B. The ARL and HRL were obtained for the first time and characterized for their phenol content, antioxidant activity, and the production of justicidin B after treatments with several elicitors and precursor feeding. Through NMR spectroscopy, other four lignans were highlighted and identified in the roots extracts. A pilot-scale bioreactor was adopted to assess the suitability of the developed root cultures for future large-scale production. The ARL and HRL cultures showed a justicidin B production higher than other Linum species cultures described up to now (75.8 mg/L and 82.2 g/L), and the production more than doubled after elicitation with MeJA.

6.
Molecules ; 27(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35408739

RESUMEN

Lignans are particularly interesting secondary metabolites belonging to the phenyl-propanoid biosynthetic pathway. From the structural point of view, these molecules could belong to the aryltetralin, arylnaphtalene, or dibenzylbutyrolactone molecular skeleton. Lignans are present in different tissues of plants but are mainly accumulated in seeds. Extracts from plant tissues could be characterized by using the NMR-based approach, which provides a profile of aromatic molecules and detailed structural information for their elucidation. In order to improve the production of these secondary metabolites, elicitors could effectively stimulate lignan production. Several plant species are considered in this review with a particular focus on Linum species, well recognized as the main producer of lignans.


Asunto(s)
Lino , Lignanos , Vías Biosintéticas , Lino/química , Lignanos/química , Espectroscopía de Resonancia Magnética , Semillas/química
7.
Anal Chim Acta ; 1187: 339138, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34753566

RESUMEN

The analytical performance of the microarray technique in screening the affinity and reactivity of molecules towards a specific target, is highly affected by the coupling chemistry adopted to bind probes to the surface. However, the surface functionality limits the biomolecules that can be attached to the surface to a single type of molecule, thus forcing the execution of separate analyses to compare the performance of different species in recognizing their targets. Here we introduce a new N, N-dimethylacrylamide-based polymeric coating, bearing simultaneously different functionalities (N-acryloyloxysuccinimide and azide groups) to allow an easy and straightforward method to co-immobilize proteins and oriented peptides on the same substrate. The bi-functional copolymer has been obtained by partial post polymerization modification of the functional groups of a common precursor. A NMR characterization of the copolymer was conducted to quantify the percentage of NAS that has been transformed into azido groups. The polymer was used to coat surfaces onto which both native antibodies and alkyne modified peptides were immobilized, to perform the phenotype characterization of extracellular vesicles (EVs). This strategy represents a convenient method to reduce the number of analysis, thus possible systematic or random errors, besides offering a drastic shortage in time, reagents and costs.


Asunto(s)
Péptidos , Polímeros , Alquinos , Azidas , Análisis por Micromatrices , Propiedades de Superficie
8.
Molecules ; 26(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500623

RESUMEN

Lignans are the main secondary metabolites synthetized by Linum species as plant defense molecules. They are also valuable for human health, in particular, for their potent antiviral and antineoplastic properties. In this study, the adventitious root cultures of three Linum species (L. flavum, L. mucronatum and L. dolomiticum) were developed to produce aryltetralin lignans. The effect of two elicitors, methyl jasmonate and coronatine, on aryltetralin lignans production was also evaluated. The adventitious root cultures from L. dolomiticum were obtained and analyzed for the first time and resulted as the best producer for all the aryltetralins highlighted in this system: Podophyllotoxin, 6-methoxypodophyllotoxin and 6-methoxypodophyllotoxin-7-O-ß-glucoside, the last showing a productivity of 92.6 mg/g DW. The two elicitors differently affected the production of the 6-methoxypodophyllotoxin and 6-methoxypodophyllotoxin-7-O-ß-glucoside.


Asunto(s)
Lino/metabolismo , Lignanos/biosíntesis , Raíces de Plantas/metabolismo , Acetatos/metabolismo , Aminoácidos/biosíntesis , Ciclopentanos/metabolismo , Indenos , Oxilipinas/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/biosíntesis
9.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801525

RESUMEN

Lignans are the main secondary metabolites synthetized by Linum species as plant defense compounds but they are also valuable for human health, in particular, for novel therapeutics. In this work, Linum austriacum in vitro cultures, cells (Cc), adventitious roots (ARc) and hairy roots (HRc) were developed for the production of justicidin B through elicitation with methyl jasmonate (MeJA) and coronatine (COR). The performances of the cultures were evaluated for their stability, total phenols content and antioxidant ability. NMR was used to identify justicidin B and isojusticidin B and HPLC to quantify the production, highlighting ARc and HRc as the highest productive tissues. MeJA and COR treatments induced the synthesis of justicidin B more than three times and the synthesis of other compounds. RNA-sequencing and a de novo assembly of L. austriacum ARc transcriptome was generated to identify the genes activated by MeJA. Furthermore, for the first time, the intracellular localization of justicidin B in ARc was investigated through microscopic analysis. Then, HRc was chosen for small-scale production in a bioreactor. Altogether, our results improve knowledge on justicidin B pathway and cellular localization in L. austriacum for future scale-up processes.


Asunto(s)
Dioxolanos/análisis , Lino/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignanos/análisis , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Transcriptoma , Dioxolanos/aislamiento & purificación , Dioxolanos/metabolismo , Lino/genética , Lino/crecimiento & desarrollo , Perfilación de la Expresión Génica , Lignanos/aislamiento & purificación , Lignanos/metabolismo , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo
10.
Talanta ; 214: 120855, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32278434

RESUMEN

Nuclear Magnetic Resonance (NMR) is an analytical technique extensively used in almost every chemical laboratory for structural identification. This technique provides statistically equivalent signals in spite of using spectrometer with different hardware features and is successfully used for the traceability and quantification of analytes in food samples. Nevertheless, to date only a few internationally agreed guidelines have been reported on the use of NMR for quantitative analysis. The main goal of the present study is to provide a methodological pipeline to assess the reproducibility of NMR data produced for a given matrix by spectrometers from different manufacturers, with different magnetic field strengths, age and hardware configurations. The results have been analyzed through a sequence of chemometric tests to generate a community-built calibration system which was used to verify the performance of the spectrometers and the reproducibility of the predicted sample concentrations.


Asunto(s)
Jugos de Frutas y Vegetales/análisis , Vitis/química , Calibración , Espectroscopía de Resonancia Magnética
11.
Molecules ; 25(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218333

RESUMEN

The supplementation of goat diets with natural products to obtain milk with nutraceutical components is a common practice. In these last years, the influence of supplementation of specifically designed diets has been studied with different analytical tools in order to explore possible beneficial effects in human consumption of animal milk and milk-derived products. In this study, the lipid fraction of milk from Alpine goats undergoing different dietary regimens was studied by 1H-NMR spectroscopy. Alpine goats were fed with linseed or hempseed supplements, and after 14 weeks of treatment, milk was collected and analyzed. Results showed that feeding diets supplemented with seeds positively affected the fatty acid composition with a pronounced increase in unsaturated fatty acids for both diets compared to a control diet. Specifically, linolenic acid content was more than doubled for linseed diet compared with the hempseed and control groups, while linoleic acid greatly increased only upon hempseed supplementation. However, a number of conjugated linoleic acid (CLA) isomers and higher levels of fatty acids with trans configuration were found in supplemented diets, particularly in the linseed diet.


Asunto(s)
Cannabis/química , Dieta , Suplementos Dietéticos , Lino/química , Lípidos/análisis , Espectroscopía de Resonancia Magnética , Leche/química , Animales , Espectroscopía de Resonancia Magnética con Carbono-13 , Ácidos Grasos/análisis , Cabras
12.
Polymers (Basel) ; 12(2)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041343

RESUMEN

The challenge to manufacture medical devices with specific antibacterial functions, and the growing demand for systems able to limit bacterial resistance growth, necessitates the development of new technologies which can be easily produced at an industrial level. The object of this work was the study and the development of silver, titanium dioxide, and chitosan composites for the realization and/or implementation of biomedical devices. Thermoplastic elastomeric polyurethane was selected and used as matrix for the various antibacterial functions introduced during the processing phase (melt compounding). This strategy was employed to directly incorporate antimicrobial agents into the main constituent material of the devices themselves. With the exception of the composite filled with titanium dioxide, all of the other tested composites were shown to possess satisfactory mechanical properties. The best antibacterial effects were obtained with all the composites against Staphylococcus aureus: viability was efficiently inhibited by the prepared materials in four different bacterial culture concentrations.

13.
Molecules ; 24(22)2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717508

RESUMEN

Cannabis sativa L. is one of the most-studied species for its phytochemistry due to the abundance of secondary metabolites, including cannabinoids, terpenes and phenolic compounds. In the last decade, fiber-type hemp varieties have received interest for the production of many specialized secondary metabolites derived from the phenylpropanoid pathway. The interest in these molecules is due to their antioxidant activity. Since secondary metabolite synthesis occurs at a very low level in plants, the aim of this study was to develop a strategy to increase the production of such compounds and to elucidate the biochemical pathways involved. Therefore, cell suspensions of industrial hemp (C. sativa L. var. Futura) were produced, and an advantageous elicitation strategy (methyl jasmonate, MeJA) in combination with precursor feeding (tyrosine, Tyr) was developed. The activity and expression of phenylalanine ammonia-lyase (PAL) and tyrosine aminotransferase (TAT) increased upon treatment. Through 1H-NMR analyses, some aromatic compounds were identified, including, for the first time, 4-hydroxyphenylpyruvate (4-HPP) in addition to tyrosol. The 4-day MeJA+Tyr elicited samples showed a 51% increase in the in vitro assay (2,2-diphenyl-1-picrylhydrazyl, DPPH) radical scavenging activity relative to the control and a 80% increase in the cellular antioxidant activity estimated on an ex vivo model of human erythrocytes. Our results outline the active metabolic pathways and the antioxidant properties of hemp cell extracts under the effect of specific elicitors.


Asunto(s)
Antioxidantes/farmacología , Cannabis/metabolismo , Extractos Vegetales/farmacología , Antioxidantes/metabolismo , Cannabinoides/metabolismo , Cannabinoides/farmacología , Línea Celular , Eritrocitos/efectos de los fármacos , Humanos , Fenoles/metabolismo , Fenoles/farmacología , Fenilanina Amoníaco-Liasa/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/metabolismo , Transducción de Señal/efectos de los fármacos , Terpenos/metabolismo , Terpenos/farmacología
14.
Magn Reson Chem ; 57(9): 558-578, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30447115

RESUMEN

In the last years, there was an increasing interest on nuclear magnetic resonance (NMR) spectroscopy, whose applications experienced an exponential growth in several research fields, particularly in food science. NMR was initially developed as the elective technique for structure elucidation of single molecules and nowadays is playing a dominant role in complex mixtures investigations. In the era of the "omics" techniques, NMR was rapidly enrolled as one of the most powerful methods to approach metabolomics studies. Its use in analytical routines, characterized by rapid and reproducible measurements, would provide the identification of a wide range of chemical compounds simultaneously, disclosing sophisticated frauds or addressing the geographical origin, as well as revealing potential markers for other authentication purposes. The great economic value of high-quality or guaranteed foods demands highly detailed characterization to protect both consumers and producers from frauds. The present scenario suggests metabolomics as the privileged approach of modern analytical studies for the next decades. The large potentiality of high-resolution NMR techniques is here presented through specific applications and using different approaches focused on the authentication process of some foods, like tomato paste, saffron, honey, roasted coffee, and balsamic and traditional balsamic vinegar of Modena, with a particular focus on geographical origin characterization, ageing determination, and fraud detection.


Asunto(s)
Análisis de los Alimentos/métodos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Alimentos , Calidad de los Alimentos , Humanos
15.
Phytochem Anal ; 29(5): 476-486, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29484754

RESUMEN

INTRODUCTION: The increasing interest on Crocus sativus L. over the last decades is caused by its potential employment as a source of biologically active molecules, endowed with antioxidant and nutraceutical properties. These molecules are present mainly in stigmas and tepals, these last generally considered as byproducts. OBJECTIVE: To characterise bioactive compounds in stigmas, stamens, and tepals of Crocus sativus L. for quality, cross-contamination of tissues or fraudulent addition, joining spectroscopic and chromatographic techniques. METHODOLOGY: Fourier transform infrared (FT-IR) and Raman spectroscopies were initially employed, being very rapid in response; volatiles were more appropriately investigated by gas chromatography with mass spectrometry (GC-MS), while finally nuclear magnetic resonance (NMR) and high-performance liquid chromatography with a diode array detector (HPLC-DAD) were adopted for a more thorough characterisation of secondary metabolites. NMR was also used to investigate the anthocyanins content in tepals upon acid extraction. RESULTS: The results obtained highlighted the drying method as the dominant factor affecting the content of volatile constituents and contributing to the quality of saffron, while only slight differences were observed in the most abundant metabolites of stigmas, as well as in the anthocyanin content of tepals. In particular, for the first time, delphinidin and petunidin were detected by NMR in this latter tissue. CONCLUSION: The integrated analytical methodology here proposed, allowed to achieve a deeper level of compositional and structural details of secondary metabolites in Crocus sativus L. flowers.


Asunto(s)
Crocus/química , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
16.
Nat Prod Res ; 31(23): 2705-2711, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28278651

RESUMEN

The effects of Perilla frutescens pollination on the content of seed antioxidants were analysed by agronomical and pollination trials, comparing seeds produced from bagged plants in 2013 (A) to prevent access to pollinating insects, and seeds from open-pollinated plants in 2013 (B) and 2015 (C). The seeds of open-pollinated plants were significantly more numerous and heavier than those of self-pollinated plants. 1H NMR seed analysis showed a higher presence of phenolic compounds in open-pollinated seeds, mainly rosmarinic acid and flavonoids, apigenin and luteolin. Flavonoids were present in the glucosylated form in seeds (A) and (C), and in the aglycone form in seeds from (B) plants. Saturated and unsaturated fatty acids (palmitic, linoleic and linolenic) were more abundant in seeds from self-pollinated flowers. Pollination performed almost exclusively by the honeybee notably increased the antioxidant content in perilla seeds and gave rise to a reduction in the fatty acid content.


Asunto(s)
Antioxidantes/química , Perilla frutescens/química , Perilla frutescens/fisiología , Polinización , Semillas/química , Animales , Antioxidantes/análisis , Apigenina/análisis , Abejas , Cinamatos/análisis , Depsidos/análisis , Luteolina/análisis , Espectroscopía de Resonancia Magnética , Ácido Rosmarínico
17.
Food Chem ; 217: 418-424, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27664653

RESUMEN

Saffron, the dried red stigmas of Crocus sativus L., is considered as one of the most expensive spices worldwide, and as such, it is prone to adulteration. This study introduces an NMR-based approach to identify and determine the adulteration of saffron with Sudan I-IV dyes. A complete (1)H and (13)C resonance assignment for Sudan I-IV, achieved by two-dimensional homonuclear and heteronuclear NMR experiments, is reported for the first time. Specific different proton signals for the identification of each Sudan dye in adulterated saffron can be utilised for quantitative (1)H NMR (qHNMR), a well-established method for quantitative analysis. The quantification of Sudan III, as a paradigm, was performed in varying levels (0.14-7.1g/kg) by considering the NMR signal occurring at 8.064ppm. The high linearity, accuracy and rapidity of investigation enable high resolution (1)H NMR spectroscopy to be used for evaluation of saffron adulteration with Sudan dyes.


Asunto(s)
Compuestos Azo/análisis , Colorantes/análisis , Crocus , Contaminación de Medicamentos , Espectroscopía de Resonancia Magnética/métodos , Compuestos Azo/química , Colorantes/química , Crocus/química , Naftoles/análisis , Naftoles/química , Extractos Vegetales/análisis , Extractos Vegetales/química , Protones , Especias/análisis
18.
Langmuir ; 32(40): 10284-10295, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27632284

RESUMEN

In this paper, we report on the postpolymerization modification (PPM) of a polymer to introduce new functionalities that enable click chemistry reactions for microarray applications. The parent polymer, named copoly(DMA-NAS-MAPS), is composed of N,N-dimethylacrylamide (DMA), a monomer that self-adsorbs onto different materials through weak interactions such as hydrogen bonding or van der Waals forces, 3-(trimethoxysilyl)propyl methacrylate (MAPS) that strengthens the stability of the coating through the formation of covalent bonds with siloxane groups on the surface to be coated, and N-acryloyloxysuccinimide (NAS), an active ester group, highly reactive toward nucleophiles, which enables bioprobe immobilization. This copolymer has been widely exploited to coat surfaces for microarray applications but exhibits some limitations because of the potential hydrolysis of the active ester (NHS ester). The degradation of the NHS ester hampers the use of this coating in some situations, for example, when probe immobilization cannot be accomplished through a microspotting situation, but in large volumes, for example, in microchannel derivatization or micro-/nanoparticle functionalization. To overcome the limitations of NHS esters, we have developed a family of polymers that originate from the common copolymer precursor, by reacting the active ester contained in the polymer chain with a bifunctional amine. In particular, the functional groups introduced in the polymer using PPM enable click chemistry reactions such as azide/alkyne or thiol/maleimide "click" reactions, with suitably modified biomolecules. The advantages of such reactions are quantitative yields, orthogonality of functional groups, and insensitivity of the reaction to pH. The new click functionalities, inserted with quantitative yields, improve the stability of the coating, enabling the attachment of biomolecules directly from a solution and avoiding the spotting of reduced volumes (pL) of probes. Finally, we have demonstrated the applicability of the click surfaces in a highly effective solid-phase PCR for the genotyping of the G12D KRAS mutation.

19.
Molecules ; 21(3): 286, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26938515

RESUMEN

In previous works on authentic samples of saffron of known history (harvest and processing year, storage conditions, and length of time) some biomarkers were proposed using both FT-IR and NMR metabolomics regarding the shelf life of the product. This work addresses the difficulties to trace back the "age" of commercial saffron samples of unknown history, sets a limit value above which these products can be considered substandard, and offers a useful tool to combat saffron mislabeling and fraud with low-quality saffron material. Investigations of authentic and commercial saffron samples of different origin and harvest year, which had been stored under controlled conditions for different lengths of time, allowed a clear-cut clustering of samples in two groups according to the storage period irrespectively of the provenience. In this respect, the four-year cut off point proposed in our previous work assisted to trace back the "age" of unknown samples and to check for possible mislabeling practices.


Asunto(s)
Crocus/química , Metabolómica/métodos , Espectroscopía de Protones por Resonancia Magnética , Control de Calidad , Espectroscopía Infrarroja por Transformada de Fourier
20.
Food Res Int ; 87: 76-82, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29606251

RESUMEN

Breast milk (BM) feeding is the gold standard in neonate nutrition. When BM is not available it can be substituted or integrated with commercial formula milk (FM) usually sold under different brands and formulations. In this work, the low-molecular-weight hydrophilic compounds in milk were studied by gas chromatography electronic impact mass spectrometry (GC-MS), comparing eight different FM brands with BM samples. With the aid of multivariate statistical data analysis, a marked variability among FM brands, especially driven by the presence of prebiotics in their formulation, was highlighted. Quali-quantitative differences were found between FM and BM. Orotic acid and isomaltulose were found exclusively in FM, while phenylalanine and tyrosine levels were high in two FM brands. Moreover, higher levels of malic acid, sugars (glucose, fructose and galactose), and mannitol were detected in FM. On the other hand, BM showed a higher amino acid content. In conclusion, GC-MS proved to be a very sensitive analytical technique for the study of FM, highlighting metabolite differences among FM brands, and between FM and BM, that may have a possible strong impact on neonatal nutrition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...