Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569016

RESUMEN

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Ratones , Animales , Microglía/metabolismo , Anticuerpos/metabolismo , Receptores de Superficie Celular/metabolismo , Amiloide/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E , Leucocitos/metabolismo , Ratones Transgénicos , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
2.
Acta Neuropathol Commun ; 12(1): 25, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336940

RESUMEN

Alzheimer's disease (AD), characterized by the deposition of amyloid-ß (Aß) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aß and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aß40, Aß42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aß40, Aß42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aß42 and pTau181 levels. Overall, our findings suggest that different patterns of Aß, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Tauopatías , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Proteínas tau , Tauopatías/patología
3.
Rheumatology (Oxford) ; 62(SI3): SI296-SI303, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37871918

RESUMEN

OBJECTIVES: Active RA has been associated with an increased risk of both cardiovascular and peripheral vascular disease. We aimed to compare cerebrovascular changes in patients with and without RA, both with and without a neuropathologic diagnosis of neurodegenerative disease. METHODS: Patients with RA (n = 32) who died and underwent autopsy between 1994 and 2021 were matched to non-RA controls (n = 32) on age, sex and level of neurodegenerative proteinopathy. Routine neuropathologic examination was performed at the time of autopsy. Cerebrovascular disease severity was evaluated using modified Kalaria and Strozyk scales. Clinical dementia diagnoses were manually collected from patients' medical records. RESULTS: Prior to death, 15 (47%) RA patients and 14 (44%) controls were diagnosed with dementia; 9 patients in each group (60% and 64%, respectively) had Alzheimer's disease. The prevalence of cerebral amyloid angiopathy, microinfarcts, infarcts or strokes was found to be similar between groups. Patients with RA were more likely to have more severe vascular changes in the basal ganglia by Kalaria scale (P = 0.04), but not in other brain areas. There were no significant differences in the presence of large infarcts, lacunar infarcts or leukoencephalopathy by Strozyk scale. Among patients with RA and no clinical diagnosis of dementia, the majority had mild-moderate cerebrovascular abnormalities, and a subset of patients had Alzheimer's disease neuropathologic changes. CONCLUSION: In this small series of autopsies, patients with and without RA had largely similar cerebrovascular pathology when controlling for neurodegenerative proteinopathies, although patients with RA exhibited more pronounced cerebrovascular disease in the basal ganglia.


Asunto(s)
Enfermedad de Alzheimer , Artritis Reumatoide , Trastornos Cerebrovasculares , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/patología , Trastornos Cerebrovasculares/etiología , Encéfalo/patología , Artritis Reumatoide/complicaciones , Artritis Reumatoide/patología , Infarto
4.
Brain Commun ; 4(4): fcac167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35822102

RESUMEN

Among people with multiple sclerosis, cognitive impairment occurs commonly and is a potent predictor of disability. Some multiple sclerosis patients present with severe cognitive impairment, and distinguishing multiple sclerosis-related cognitive impairment from co-existent progressive neurodegenerative diseases such as Alzheimer disease poses a diagnostic challenge. The use of biomarkers such as PET and CSF proteins may facilitate this distinction. The study was a retrospective, descriptive study on convenience samples of separate cohorts, one of cognitively impaired multiple sclerosis patients evaluated on autopsy to demonstrate coincidence of both multiple sclerosis and neurodegenerative cognitive diseases. The second cohort were cognitively impaired multiple sclerosis patients evaluated by biomarker to investigate possible additional neurodegenerative cognitive disorders contributing to the cognitive impairment. We investigated selected biomarkers among 31 severely impaired patients (biomarker cohort) and 12 severely impaired patients assessed at autopsy and selected 24 (23 biomarker cohort, 1 autopsy cohort) had comprehensive neurocognitive testing. Biomarker cohort investigations included 18F-Fluorodeoxyglucose PET and/or CSF amyloid Aß1-42, phospho-tau and total tau levels. The autopsy cohort was evaluated with comprehensive neuropathological assessment for aetiology of cognitive impairment. The cohorts shared similar sex, age at multiple sclerosis onset and multiple sclerosis clinical course. The autopsy-cohort patients were older at diagnosis (69.5 versus 57 years, P = 0.006), had longer disease duration [median (range) 20 years (3-59) versus 9 (1-32), P = 0.001] and had more impaired bedside mental status scores at last follow-up [Kokmen median (range) 23 (1-38) versus 31 (9-34) P = 0.01]. Autopsy-cohort patients confirmed, or excluded, coexistent neurogenerative disease by neuropathology gold standard. Most biomarker-cohort patients had informative results evaluating coexistent neurogenerative disease. Biomarkers may be useful in indicating a coexistent neurodegenerative disease earlier, and in life, in patients with multiple sclerosis and significant cognitive impairment.

5.
Neurology ; 97(18): e1799-e1808, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34504022

RESUMEN

BACKGROUND AND OBJECTIVES: To determine the contribution of cerebral amyloid angiopathy (CAA) to Pittsburgh compound B (PiB)-PET tracer retention. METHODS: Participants from the Mayo Clinic Study of Aging and Mayo Clinic Alzheimer's Disease Research Center with antemortem PiB-PET imaging for ß-amyloid (Aß) who later underwent autopsy were included in this study. Pathologic regional leptomeningeal, parenchymal, capillary CAA, and Aß plaque burden were calculated from one hemisphere. Regional lobar amyloid standardized uptake value ratio (SUVR) on PET was calculated from the same hemisphere sampled at autopsy. Single- and multiple-predictor linear regression models were used to evaluate the relative contributions of pathologically determined regional CAA and Aß plaques to antemortem PiB-PET SUVR. RESULTS: Forty-one participants (30 male, 11 female) with a mean (SD) age at death of 75.7 (10.6) years were included. Twenty-seven (66%) had high PiB signal with a mean (SD) of 2.3 (1.2) years from time of PET scan to death; 24 (59%) had a pathologic diagnosis of Alzheimer disease. On multivariate analysis, CAA was not associated with PiB-PET SUVR, while plaques remained associated with PiB-PET SUVR in all regions (all p < 0.05). In patients without frequent amyloid plaques, CAA was not associated with PiB-PET in any region. DISCUSSION: We did not find evidence that pathologically confirmed regional CAA burden contributes significantly to proximal antemortem regional PiB-PET signal, suggesting that amyloid PET imaging for measurement of cortical amyloid burden is unconfounded by CAA on a lobar level. Whether CAA burden contributes to PiB-PET signal in patients with severe CAA phenotypes, such as lobar hemorrhage, requires further investigation.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Anciano , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Compuestos de Anilina , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino , Placa Amiloide/diagnóstico por imagen , Placa Amiloide/patología , Tomografía de Emisión de Positrones/métodos
6.
J Alzheimers Dis ; 81(1): 113-122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33720897

RESUMEN

BACKGROUND: The relationship between cerebral microbleeds (CMBs) on hemosiderin-sensitive MRI sequences and cerebral amyloid angiopathy (CAA) remains unclear in population-based participants or in individuals with dementia. OBJECTIVE: To determine whether CMBs on antemortem MRI correlate with CAA. METHODS: We reviewed 54 consecutive participants with antemortem T2*GRE-MRI sequences and subsequent autopsy. CMBs were quantified on MRIs closest to death. Autopsy CAA burden was quantified in each region including leptomeningeal/cortical and capillary CAA. By a clustering approach, we examined the relationship among CAA variables and performed principal component analysis (PCA) for dimension reduction to produce two scores from these 15 interrelated predictors. Hurdle models assessed relationships between principal components and lobar CMBs. RESULTS: MRI-based CMBs appeared in 20/54 (37%). 10 participants had ≥2 lobar-only CMBs. The first two components of the PCA analysis of the CAA variables explained 74% variability. The first rotated component (RPC1) consisted of leptomeningeal and cortical CAA and the second rotated component of capillary CAA (RPC2). Both the leptomeningeal and cortical component and the capillary component correlated with lobar-only CMBs. The capillary CAA component outperformed the leptomeningeal and cortical CAA component in predicting lobar CMBs. Both capillary and the leptomeningeal/cortical components correlated with number of lobar CMBs. CONCLUSION: Capillary and leptomeningeal/cortical scores correlated with lobar CMBs on MRI but lobar CMBs were more closely associated with the capillary component. The capillary component correlated with APOEɛ4, highlighting lobar CMBs as one aspect of CAA phenotypic diversity. More CMBs also increase the probability of underlying CAA.


Asunto(s)
Encéfalo/patología , Angiopatía Amiloide Cerebral/patología , Hemorragia Cerebral/patología , Fenotipo , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Hemorragia Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
7.
Am J Physiol Heart Circ Physiol ; 318(6): H1461-H1473, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383991

RESUMEN

There is a sharp rise in cardiovascular disease (CVD) risk and progression with the onset of menopause. The 4-vinylcyclohexene diepoxide (VCD) model of menopause recapitulates the natural, physiological transition through perimenopause to menopause. We hypothesized that menopausal female mice were more susceptible to CVD than pre- or perimenopausal females. Female mice were treated with VCD or vehicle for 20 consecutive days. Premenopausal, perimenopausal, and menopausal mice were administered angiotensin II (ANG II) or subjected to ischemia-reperfusion (I/R). Menopausal females were more susceptible to pathological ANG II-induced cardiac remodeling and cardiac injury from a myocardial infarction (MI), while perimenopausal, like premenopausal, females remained protected. Specifically, ANG II significantly elevated diastolic (130.9 ± 6.0 vs. 114.7 ± 6.2 mmHg) and systolic (156.9 ± 4.8 vs. 141.7 ± 5.0 mmHg) blood pressure and normalized cardiac mass (15.9 ± 1.0 vs. 7.7 ± 1.5%) to a greater extent in menopausal females compared with controls, whereas perimenopausal females demonstrated a similar elevation of diastolic (93.7 ± 2.9 vs. 100.5 ± 4.1 mmHg) and systolic (155.9 ± 7.3 vs. 152.3 ± 6.5 mmHg) blood pressure and normalized cardiac mass (8.3 ± 2.1 vs. 7.5 ± 1.4%) compared with controls. Similarly, menopausal females demonstrated a threefold increase in fibrosis measured by Picrosirus red staining. Finally, hearts of menopausal females (41 ± 5%) showed larger infarct sizes following I/R injury than perimenopausal (18.0 ± 5.6%) and premenopausal (16.2 ± 3.3, 20.1 ± 4.8%) groups. Using the VCD model of menopause, we provide evidence that menopausal females were more susceptible to pathological cardiac remodeling. We suggest that the VCD model of menopause may be critical to better elucidate cellular and molecular mechanisms underlying the transition to CVD susceptibility in menopausal women.NEW & NOTEWORTHY Before menopause, women are protected against cardiovascular disease (CVD) compared with age-matched men; this protection is gradually lost after menopause. We present the first evidence that demonstrates menopausal females are more susceptible to pathological cardiac remodeling while perimenopausal and cycling females are not. The VCD model permits appropriate examination of how increased susceptibility to the pathological process of cardiac remodeling accelerates from pre- to perimenopause to menopause.


Asunto(s)
Remodelación Atrial/fisiología , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/fisiopatología , Ciclohexenos , Menopausia/fisiología , Compuestos de Vinilo , Angiotensina II , Animales , Enfermedades Cardiovasculares/inducido químicamente , Femenino , Ratones , Modelos Animales
8.
Acta Neuropathol ; 140(1): 1-6, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32449057

RESUMEN

We report the neuropathological findings of a patient who died from complications of COVID-19. The decedent was initially hospitalized for surgical management of underlying coronary artery disease. He developed post-operative complications and was evaluated with chest imaging studies. The chest computed tomography (CT) imaging results were indicative of COVID-19 and he was subsequently tested for SARS-CoV-2, which was positive. His condition worsened and he died after more than 2 weeks of hospitalization and aggressive treatment. The autopsy revealed a range of neuropathological lesions, with features resembling both vascular and demyelinating etiologies. Hemorrhagic white matter lesions were present throughout the cerebral hemispheres with surrounding axonal injury and macrophages. The subcortical white matter had scattered clusters of macrophages, a range of associated axonal injury, and a perivascular acute disseminated encephalomyelitis (ADEM)-like appearance. Additional white matter lesions included focal microscopic areas of necrosis with central loss of white matter and marked axonal injury. Rare neocortical organizing microscopic infarcts were also identified. Imaging and clinical reports have demonstrated central nervous system complications in patients' with COVID-19, but there is a gap in our understanding of the neuropathology. The lesions described in this case provide insight into the potential parainfectious processes affecting COVID-19 patients, which may direct clinical management and ongoing research into the disease. The clinical course of the patient also illustrates that during prolonged hospitalizations neurological complications of COVID may develop, which are particularly difficult to evaluate and appreciate in the critically ill.


Asunto(s)
Betacoronavirus/patogenicidad , Encéfalo/patología , Infecciones por Coronavirus/patología , Enfermedades del Sistema Nervioso/patología , Neumonía Viral/patología , Anciano , Autopsia , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Neuropatología/métodos , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/virología , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos
9.
J Neurol ; 267(9): 2697-2704, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32440921

RESUMEN

BACKGROUND: Pick's disease (PiD) is a unique subtype of frontotemporal lobar degeneration characterized pathologically by aggregates of 3-Repeat tau. Few studies have examined the clinical variability and disease progression in PiD. We describe the clinical features, neuropsychological profiles and coexistent pathologies in 21 cases of autopsy-confirmed PiD. METHODS: This study was a retrospective analysis of patients with Pick's disease evaluated at Mayo Clinic, Rochester or Jacksonville (1995-2018), and identified through an existing database. RESULTS: Twenty-one cases with sufficient clinical data were identified. Behavioral variant FTD (bvFTD; 12/21) was the most common phenotype, followed by primary progressive aphasia (PPA; 7/21), corticobasal syndrome (CBS; 1/21) and amnestic dementia (1/21). Median age at disease onset was 54 years, with PPA cases (median = 52 years) presenting earlier than bvFTD (median = 59). Median disease duration (onset-death) overall was 10 years and did not differ significantly between bvFTD (median = 9.5 years) and PPA (median = 13). Age at death was not significantly different in PPA (median = 66) compared to bvFTD (median = 68.5). A third of the cases (n = 7/21) demonstrated pure PiD pathology, while the remainder showed co-existent other pathologies including Alzheimer's type (n = 6), cerebral amyloid angiopathy (n = 3), combined Alzheimer's and amyloid angiopathy (n = 4), and Lewy body disease (n = 1). CONCLUSIONS: Our study shows that bvFTD and PPA are the most common clinical phenotypes associated with PiD, although rare presentations such as CBS were also seen. Coexisting non-Pick's pathology was also present in many cases. Our study highlights the clinical and pathologic heterogeneity in PiD.


Asunto(s)
Afasia Progresiva Primaria , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad de Pick , Humanos , Enfermedad de Pick/epidemiología , Estudios Retrospectivos
10.
J Int Soc Sports Nutr ; 16(1): 15, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947727

RESUMEN

BACKGROUND: Exercise and heat trigger dehydration and an increase in extracellular fluid osmolality, leading to deficits in exercise performance and thermoregulation. Evidence from previous studies supports the potential for deep-ocean mineral water to improve recovery of exercise performance post-exercise. We therefore wished to determine whether acute rehydration and muscle strength recovery was enhanced by deep-ocean mineral water following a dehydrating exercise, compared to a sports drink or mountain spring water. We hypothesized that muscle strength would decrease as a result of dehydrating exercise, and that recovery of muscle strength and hydration would depend on the type of rehydrating fluid. METHODS: Using a counterbalanced, crossover study design, female (n = 8) and male (n = 9) participants performed a dehydrating exercise protocol under heat stress until achieving 3% body mass loss. Participants rehydrated with either deep-ocean mineral water (Deep), mountain spring water (Spring), or a carbohydrate-based sports drink (Sports) at a volume equal to the volume of fluid loss. We measured relative hydration using salivary osmolality (Sosm) and muscle strength using peak torque from a leg extension maneuver. RESULTS: Sosm significantly increased (p < 0.0001) with loss of body mass during the dehydrating exercise protocol. Males took less time (90.0 ± 18.3 min; P < 0.0034) to reach 3% body mass loss when compared to females (127.1 ± 20.0 min). We used a mono-exponential model to fit the return of Sosm to baseline values during the rehydrating phase. Whether fitting stimulated or unstimulated Sosm, male and female participants receiving Deep as the hydrating fluid exhibited the most rapid return to baseline Sosm (p < 0.0001) regardless of the fit parameter. Males compared to females generated more peak torque (p = 0.0005) at baseline (308.3 ± 56.7 Nm vs 172.8 ± 40.8 Nm, respectively) and immediately following 3% body mass loss (276.3 ± 39.5 Nm vs 153.5 ± 35.9 Nm). Participants experienced a loss. We also identified a significant effect of rehydrating fluid and sex on post-rehydration peak torque (p < 0.0117). CONCLUSION: We conclude that deep-ocean mineral water positively affected hydration recovery after dehydrating exercise, and that it may also be beneficial for muscle strength recovery, although this, as well as the influence of sex, needs to be further examined by future research. TRIAL REGISTRATION: clincialtrials.gov PRS, NCT02486224 . Registered 08 June 2015.


Asunto(s)
Deshidratación , Agua Potable , Bebidas Energéticas , Ejercicio Físico , Fluidoterapia , Aguas Minerales/uso terapéutico , Adulto , Rendimiento Atlético , Temperatura Corporal , Estudios Cruzados , Femenino , Frecuencia Cardíaca , Respuesta al Choque Térmico , Calor , Humanos , Masculino , Concentración Osmolar , Equilibrio Hidroelectrolítico , Adulto Joven
11.
eNeuro ; 5(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417081

RESUMEN

Here we used mouse models of heart and brain ischemia to compare the inflammatory response to ischemia in the heart, a protein rich organ, to the inflammatory response to ischemia in the brain, a lipid rich organ. We report that ischemia-induced inflammation resolves between one and four weeks in the heart compared to between eight and 24 weeks in the brain. Importantly, we discovered that a second burst of inflammation occurs in the brain between four and eight weeks following ischemia, which coincided with the appearance of cholesterol crystals within the infarct. This second wave shares a similar cellular and molecular profile with atherosclerosis and is characterized by high levels of osteopontin (OPN) and matrix metalloproteinases (MMPs). In order to test the role of OPN in areas of liquefactive necrosis, OPN-/- mice were subjected to brain ischemia. We found that at seven weeks following stroke, the expression of pro-inflammatory proteins and MMPs was profoundly reduced in the infarct of the OPN-/- mice, although the number of cholesterol crystals was increased. OPN-/- mice exhibited faster recovery of motor function and a higher number of neuronal nuclei (NeuN) positive cells in the peri-infarct area at seven weeks following stroke. Based on these findings we propose that the brain liquefies after stroke because phagocytic cells in the infarct are unable to efficiently clear cholesterol rich myelin debris, and that this leads to the perpetuation of an OPN-dependent inflammatory response characterized by high levels of degradative enzymes.


Asunto(s)
Aterosclerosis/complicaciones , Isquemia Encefálica/complicaciones , Encéfalo/patología , Osteopontina/farmacología , Accidente Cerebrovascular/complicaciones , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/patología , Accidente Cerebrovascular/metabolismo
12.
Behav Neurosci ; 131(1): 99-114, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28054808

RESUMEN

Patients with congestive heart failure (CHF) have increased hospital readmission rates and mortality if they are concomitantly diagnosed with cognitive decline and memory loss. Accordingly, we developed a preclinical model of CHF-induced cognitive impairment with the goal of developing novel protective therapies against CHF related cognitive decline. CHF was induced by ligation of the left coronary artery to instigate a myocardial infarction (MI). By 4- and 8-weeks post-MI, CHF mice had approximately a 50% and 70% decline in ejection fraction as measured by echocardiography. At both 4- and 8-weeks post-MI, spatial memory performance in CHF mice as tested using the Morris water task was significantly impaired as compared with sham. In addition, CHF mice had significantly worse performance on object recognition when compared with shams as measured by discrimination ratios during the novel object recognition NOR task. At 8-weeks post-MI, a subgroup of CHF mice were given Angiotensin (Ang)-(1-7) (50mcg/kg/hr) subcutaneously for 4 weeks. Following 3 weeks treatment with systemic Ang-(1-7), the CHF mice NOR discrimination ratios were similar to shams and significantly better than the performance of CHF mice treated with saline. Ang-(1-7) also improved spatial memory in CHF mice as compared with shams. Ang-(1-7) had no effect on cardiac function. Inflammatory biomarker studies from plasma revealed a pattern of neuroprotection that may underlie the observed improvements in cognition. These results demonstrate a preclinical mouse model of CHF that exhibits both spatial memory and object recognition dysfunction. Furthermore, this CHF-induced cognitive impairment is attenuated by treatment with systemic Ang-(1-7). (PsycINFO Database Record


Asunto(s)
Angiotensina I/administración & dosificación , Disfunción Cognitiva/prevención & control , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/complicaciones , Fragmentos de Péptidos/administración & dosificación , Angiotensina I/uso terapéutico , Animales , Disfunción Cognitiva/etiología , Insuficiencia Cardíaca/fisiopatología , Inflamación/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio , Fragmentos de Péptidos/uso terapéutico , Remodelación Ventricular/efectos de los fármacos , Agudeza Visual/efectos de los fármacos
13.
J Int Soc Sports Nutr ; 13: 17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27087798

RESUMEN

BACKGROUND: Dehydration caused by prolonged exercise impairs thermoregulation, endurance and exercise performance. Evidence from animal and human studies validates the potential of desalinated deep-ocean mineral water to positively impact physiological and pathophysiological conditions. Here, we hypothesize that deep-ocean mineral water drawn from a depth of 915 m off the Kona, HI coast enhances recovery of hydration and exercise performance following a dehydrating exercise protocol compared to mountain spring water and a carbohydrate-based sports drink. FINDINGS: Subjects (n = 8) were exposed to an exercise-dehydration protocol (stationary biking) under warm conditions (30 °C) to achieve a body mass loss of 3 % (93.4 ± 21.7 total exercise time). During the post-exercise recovery period, subjects received deep-ocean mineral water (Kona), mountain spring water (Spring) or a carbohydrate-based sports drink (Sports) at a volume (in L) equivalent to body mass loss (in Kg). Salivary samples were collected at regular intervals during exercise and post-exercise rehydration. Additionally, each participant performed peak torque knee extension as a measure of lower body muscle performance. Subjects who received Kona during the rehydrating period showed a significantly more rapid return to pre-exercise (baseline) hydration state, measured as the rate of decline in peak to baseline salivary osmolality, compared to Sports and Spring groups. In addition, subjects demonstrated significantly improved recovery of lower body muscle performance following rehydration with Kona versus Sports or Spring groups. CONCLUSIONS: Deep-ocean mineral water shows promise as an optimal rehydrating source over spring water and/or sports drink.


Asunto(s)
Atletas , Rendimiento Atlético/fisiología , Deshidratación/fisiopatología , Fluidoterapia/métodos , Aguas Minerales , Resistencia Física/fisiología , Equilibrio Hidroelectrolítico/fisiología , Bebidas Gaseosas , Ingestión de Líquidos , Bebidas Energéticas , Femenino , Humanos , Masculino , Océanos y Mares
14.
J Vis Exp ; (86)2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24747886

RESUMEN

The risk of cardiovascular disease (CVD) increases in post-menopausal women, yet, the role of exercise, as a preventative measure for CVD risk in post-menopausal women has not been adequately studied. Accordingly, we investigated the impact of voluntary cage-wheel exercise and forced treadmill exercise on cardiac adaptation in menopausal mice. The most commonly used inducible model for mimicking menopause in women is the ovariectomized (OVX) rodent. However, the OVX model has a few dissimilarities from menopause in humans. In this study, we administered 4-vinylcyclohexene diepoxide (VCD) to female mice, which accelerates ovarian failure as an alternative menopause model to study the impact of exercise in menopausal mice. VCD selectively accelerates the loss of primary and primordial follicles resulting in an endocrine state that closely mimics the natural progression from pre- to peri- to post-menopause in humans. To determine the impact of exercise on exercise capacity and cardiac adaptation in VCD-treated female mice, two methods were used. First, we exposed a group of VCD-treated and untreated mice to a voluntary cage wheel. Second, we used forced treadmill exercise to determine exercise capacity in a separate group VCD-treated and untreated mice measured as a tolerance to exercise intensity and endurance.


Asunto(s)
Adaptación Fisiológica/fisiología , Ciclohexenos/administración & dosificación , Corazón/fisiología , Menopausia/fisiología , Modelos Animales , Ovario/efectos de los fármacos , Condicionamiento Físico Animal , Compuestos de Vinilo/administración & dosificación , Animales , Femenino , Menopausia/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ovario/fisiología
15.
Front Physiol ; 4: 205, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23986715

RESUMEN

Although familial hypertrophic cardiomyopathy (FHC) is characterized as cardiac disease in the absence of overt stressors, disease penetrance, and pathological progression largely depend on modifying factors. Accordingly, pressure overload by transverse aortic constriction (TAC) was induced in 2-month-old, male mice with and without a FHC (R403Q) mutation in α-myosin heavy chain. A significantly greater number of FHC mice (n = 8) than wild-type (WT) mice (n = 5) died during the 9-week study period. TAC induced a significant increase in cardiac mass whether measured at 2 or 9 weeks post-TAC in both WT and FHC mice, albeit to a different extent. However, the temporal and morphological trajectory of ventricular remodeling was impacted by the FHC transgene. Both WT and FHC hearts responded to TAC with an early (2 weeks post-TAC) and significant augmentation of the relative wall thickness (RWT) indicative of concentric hypertrophy. By 9 weeks post-TAC, RWT decreased in WT hearts (eccentric hypertrophy) but remained elevated in FHC hearts. WT hearts following TAC demonstrated enhanced cardiac function as measured by the end-systolic pressure-volume relationship, pre-load recruitable stroke work (PRSW), and myocardial relaxation indicative of compensatory hypertrophy. Similarly, TAC induced differential histological and cellular remodeling; TAC reduced expression of the sarcoplasmic reticulum Ca(2+)-ATPase (2a) (SERCA2a; 2 and 9 weeks) and phospholamban (PLN; 2 weeks) but increased PLN phosphorylation (2 weeks) and ß-myosin heavy chain (ß-MyHC; 9 weeks) in WT hearts. FHC-TAC hearts showed increased ß-MyHC (2 and 9 weeks) and a late (9 weeks) decrease in PLN expression concomitant with a significant increase in PLN phosphorylation. We conclude that FHC hearts respond to TAC induced pressure overload with increased premature death, severe concentric hypertrophy, and a differential ability to undergo morphological, functional, or cellular remodeling compared to WT hearts.

16.
Comp Med ; 63(3): 233-43, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23759526

RESUMEN

The role of exercise in decreasing the risk of cardiovascular disease in postmenopausal women has not been studied sufficiently. Accordingly, we investigated the effect of voluntary wheel-running and forced treadmill exercise on cardiac adaptation in mice treated with 4-vinylcyclohexine diepoxide (VCD), which selectively accelerates the loss of primary and primordial follicles and results in a state that closely mimics human menopause. Two-month-old female C57BL/6 mice injected with VCD (160 mg/kg) for 20 consecutive days underwent ovarian failure by 60 to 90 d after injection. Responses to voluntary wheel running and treadmill exercise did not differ between VCD- and vehicle-treated 7-mo-old C57BL/6 or outbred B6C3F1 mice. Moreover, adaptive cardiac hypertrophy, hypertrophic marker expression, and skeletal muscle characteristics after voluntary cage-wheel exercise did not differ between VCD- and vehicle-treated mice. Because 5' AMP-activated protein kinase (AMPK) is a key component for the maintenance of cardiac energy balance during exercise, we determined the effect of exercise and VCD-induced ovarian failure on the AMPK signaling axis in the heart. According to Western blotting, VCD treatment followed by voluntary cage-wheel exercise differently affected the upstream AMPK regulatory components AMPKα1 and AMPKα2. In addition, net downstream AMPK signaling was reduced after VCD treatment and exercise. Our data suggest that VCD did not affect exercise-induced cardiac hypertrophy but did alter cellular cardiac adaptation in a mouse model of menopause.


Asunto(s)
Adaptación Fisiológica , Ciclohexenos/toxicidad , Corazón/fisiopatología , Enfermedades del Ovario/inducido químicamente , Condicionamiento Físico Animal , Compuestos de Vinilo/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Enfermedades del Ovario/enzimología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...