Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
World Neurosurg X ; 21: 100262, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193093

RESUMEN

Objective: The aim of the present study was to investigate trunk kinematics and spine muscle activation during walking after minimally invasive surgery in patients with L4-L5 degenerative spondylolisthesis suffering from lumbar instability (LI). Methods: Eleven patients suffering from LI and 13 healthy controls (HC) were enrolled. Trunk kinematics and spine muscle activation patterns during walking were collected. Maximal trunk ranges of motion were also recorded from standing position. Assessments were performed pre-operatively (T0), 1 month (T1) and 3 months (T2) after MIS. Results: We found significant improvement in spine muscle activation during walking at T2 compared to T0, mainly involving right/left symmetry at the operated level (L4-L5) and up-down synchronization from L3 to S1. Significant improvements in trunk rotation nearing to the HC group during walking were also found at T2 after surgery, though no changes were observed in the maximal range of motion of the trunk during standing. Furthermore, trunk rotation improvement correlated with a lower grade of residual disability. Conclusions: Our findings indicate that trunk rotation improves after surgery, and impaired aspects of spine muscle activation can be improved with surgery. These biomechanical parameters could represent novel tools for monitoring the effect of surgery in LI and preventing impaired spine mobility and muscle activation.

2.
Cerebellum ; 23(4): 1478-1489, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38279000

RESUMEN

This study aimed to assess the responsiveness to the rehabilitation of three trunk acceleration-derived gait indexes, namely the harmonic ratio (HR), the short-term longest Lyapunov's exponent (sLLE), and the step-to-step coefficient of variation (CV), in a sample of subjects with primary degenerative cerebellar ataxia (swCA), and investigate the correlations between their improvements (∆), clinical characteristics, and spatio-temporal and kinematic gait features. The trunk acceleration patterns in the antero-posterior (AP), medio-lateral (ML), and vertical (V) directions during gait of 21 swCA were recorded using a magneto-inertial measurement unit placed at the lower back before (T0) and after (T1) a period of inpatient rehabilitation. For comparison, a sample of 21 age- and gait speed-matched healthy subjects (HSmatched) was also included. At T1, sLLE in the AP (sLLEAP) and ML (sLLEML) directions significantly improved with moderate to large effect sizes, as well as SARA scores, stride length, and pelvic rotation. sLLEML and pelvic rotation also approached the HSmatched values at T1, suggesting a normalization of the parameter. HRs and CV did not significantly modify after rehabilitation. ∆sLLEML correlated with ∆ of the gait subscore of the SARA scale (SARAGAIT) and ∆stride length and ∆sLLEAP correlated with ∆pelvic rotation and ∆SARAGAIT. The minimal clinically important differences for sLLEML and sLLEAP were ≥ 36.16% and ≥ 28.19%, respectively, as the minimal score reflects a clinical improvement in SARA scores. When using inertial measurement units, sLLEAP and sLLEML can be considered responsive outcome measures for assessing the effectiveness of rehabilitation on trunk stability during walking in swCA.


Asunto(s)
Ataxia Cerebelosa , Marcha , Torso , Humanos , Masculino , Femenino , Persona de Mediana Edad , Torso/fisiopatología , Fenómenos Biomecánicos/fisiología , Anciano , Marcha/fisiología , Ataxia Cerebelosa/rehabilitación , Ataxia Cerebelosa/fisiopatología , Adulto , Equilibrio Postural/fisiología , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/fisiopatología , Resultado del Tratamiento
3.
Sensors (Basel) ; 23(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37430896

RESUMEN

The aim of this study was to assess the ability of multiscale sample entropy (MSE), refined composite multiscale entropy (RCMSE), and complexity index (CI) to characterize gait complexity through trunk acceleration patterns in subjects with Parkinson's disease (swPD) and healthy subjects, regardless of age or gait speed. The trunk acceleration patterns of 51 swPD and 50 healthy subjects (HS) were acquired using a lumbar-mounted magneto-inertial measurement unit during their walking. MSE, RCMSE, and CI were calculated on 2000 data points, using scale factors (τ) 1-6. Differences between swPD and HS were calculated at each τ, and the area under the receiver operating characteristics, optimal cutoff points, post-test probabilities, and diagnostic odds ratios were calculated. MSE, RCMSE, and CIs showed to differentiate swPD from HS. MSE in the anteroposterior direction at τ4 and τ5, and MSE in the ML direction at τ4 showed to characterize the gait disorders of swPD with the best trade-off between positive and negative posttest probabilities and correlated with the motor disability, pelvic kinematics, and stance phase. Using a time series of 2000 data points, a scale factor of 4 or 5 in the MSE procedure can yield the best trade-off in terms of post-test probabilities when compared to other scale factors for detecting gait variability and complexity in swPD.


Asunto(s)
Personas con Discapacidad , Trastornos Motores , Enfermedad de Parkinson , Humanos , Entropía , Factores de Tiempo , Aceleración , Algoritmos
4.
Sci Rep ; 13(1): 10993, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419964

RESUMEN

Exosomes are well established effectors of cell-cell communication. Their role on maturation of embryonic cells located in hippocampus, seat of memory, is unknown. Here we show that ceramide facilitates release of exosomes from HN9.10e cells extending information for cell differentiation to neighboring cells. We found only 38 miRNAs differentially expressed in exosomes derived from ceramide-treated cells in comparison with control cells (including 10 up-regulated and 28 down-regulated). Some overexpressed miRNAs (mmu-let-7f-1-3p, mmu-let-7a-1-3p, mmu-let-7b-3p, mmu-let-7b-5p, mmu-miR-330-3p) regulate genes encoding for protein involved in biological, homeostatic, biosynthetic and small molecule metabolic processes, embryo development and cell differentiation, all phenomena relevant for HN9.10e cell differentiation. Notably, the overexpressed mmu-let-7b-5p miRNA appears to be important for our study based on its ability to regulate thirty-five gene targets involved in many processes including sphingolipid metabolism, sphingolipid-related stimulation of cellular functions and neuronal development. Furthermore, we showed that by incubating embryonic cells with exosomes released under ceramide treatment, some cells acquired an astrocytic phenotype and others a neuronal phenotype. We anticipate our study to be a start point for innovative therapeutic strategies to regulate the release of exosomes useful to stimulate delayed brain development in the newborn and to improve the cognitive decline in neurodegenerative disorders.


Asunto(s)
Exosomas , MicroARNs , Exosomas/genética , Exosomas/metabolismo , Ceramidas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Comunicación Celular , Diferenciación Celular/genética
5.
Cells ; 12(10)2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37408202

RESUMEN

Growing evidence suggests a crucial role of neuroinflammation in the pathophysiology of Parkinson's disease (PD). Neuroinflammation is linked to the accumulation and aggregation of a-synuclein (αSyn), the primary pathological hallmark of PD. Toll-like receptors 4 (TLR4) can have implications in the development and progression of the pathology. In this study, we analyzed the expression of TLR4 in the substantia nigra (SN) and medial temporal gyrus (GTM) of well-characterized PD patients and age-matched controls. We also assessed the co-localization of TLR4 with pSer129 αSyn. Using qPCR, we observed an upregulation of TLR4 expression in the SN and GTM in PD patients compared to controls, which was accompanied by a reduction in αSyn expression likely due to the depletion of dopaminergic (DA) cells. Additionally, using immunofluorescence and confocal microscopy, we observed TLR4-positive staining and co-localization with pSer129-αSyn in Lewy bodies of DA neurons in the SN, as well as in pyramidal neurons in the GTM of PD donors. Furthermore, we observed a co-localization of TLR4 and Iba-1 in glial cells of both SN and GTM. Our findings provide evidence for the increased expression of TLR4 in the PD brain and suggest that the interaction between TLR4 and pSer129-αSyn could play a role in mediating the neuroinflammatory response in PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Cuerpos de Lewy/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
6.
Neurobiol Learn Mem ; 203: 107776, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37236300

RESUMEN

The contextual fear conditioning (CFC) paradigm is the most productive approach for understanding the neurobiology of learning and memory as it allows to follow the evolution of memory traces of a conditioned stimulus and a specific context. The formation of long-term memory involves alterations in synaptic efficacy and neural transmission. It is known that the prefrontal cortex (PFC) exerts top-down control over subcortical structures to regulate behavioural responses. Moreover, cerebellar structures are involved in storing conditioned responses. The purpose of this research was to determine if the response to conditioning and stressful challenge is associated with alterations in synapse-related genes mRNA levels in the PFC, cerebellar vermis (V), and hemispheres (H) of young adult male rats. Four groups of Wistar rats were examined: naïve, CFC, shock only (SO), and exploration (EXPL). The behavioural response was evaluated by measuring the total freezing duration. Real-Time PCR was employed to quantify mRNA levels of some genes involved in synaptic plasticity. The results obtained from this study showed alterations in gene expression in different synapse-related genes after exposure to stressful stimuli and positioning to new environment. In conclusion, conditioning behavioural stimuli change the expression profile of molecules involved in neural transmission.


Asunto(s)
Vermis Cerebeloso , Corteza Prefrontal , Ratas , Masculino , Animales , Ratas Wistar , Corteza Prefrontal/fisiología , Sinapsis , Miedo/fisiología , Expresión Génica , ARN Mensajero/metabolismo
7.
Cells ; 12(9)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37174631

RESUMEN

The misfolding and subsequent abnormal accumulation and aggregation of α-Synuclein (αSyn) as insoluble fibrils in Lewy bodies and Lewy neurites is the pathological hallmark of Parkinson's disease (PD) and several neurodegenerative disorders. A combination of environmental and genetic factors is linked to αSyn misfolding, among which neuroinflammation is recognized to play an important role. Indeed, a number of studies indicate that a Toll-like receptor (TLR)-mediated neuroinflammation might lead to a dopaminergic neural loss, suggesting that TLRs could participate in the pathogenesis of PD as promoters of immune/neuroinflammatory responses. Here we will summarize our current understanding on the mechanisms of αSyn aggregation and misfolding, focusing on the contribution of TLRs to the progression of α-synucleinopathies and speculating on their link with the non-motor disturbances associated with aging and neurodegenerative disorders.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , Sinucleinopatías/patología , Enfermedades Neuroinflamatorias , alfa-Sinucleína/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Cuerpos de Lewy , Inflamación/patología
8.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986440

RESUMEN

(1) Background: Obesity, a complex metabolic disease resulting from an imbalance between food consumption and energy expenditure, leads to an increase in adipocytes and chronic inflammatory conditions. The aim of this paper was to synthesize a small series of carvacrol derivatives (CD1-3) that are able to reduce both adipogenesis and the inflammatory status often associated with the progression of the obesity disease. (2) Methods: The synthesis of CD1-3 was performed using classical procedures in a solution phase. Biological studies were performed on three cell lines: 3T3-L1, WJ-MSCs, and THP-1. The anti-adipogenic properties of CD1-3 were evaluated using western blotting and densitometric analysis by assessing the expression of obesity-related proteins, such as ChREBP. The anti-inflammatory effect was estimated by measuring the reduction in TNF-α expression in CD1-3-treated THP-1 cells. (3) Results: CD1-3-obtained through a direct linkage between the carboxylic moiety of anti-inflammatory drugs (Ibuprofen, Flurbiprofen, and Naproxen) and the hydroxyl group of carvacrol-have an inhibitory effect on the accumulation of lipids in both 3T3-L1 and WJ-MSCs cell cultures and an anti-inflammatory effect by reducing TNF- α levels in THP-1 cells. (4) Conclusions: Considering the physicochemical properties, stability, and biological data, the CD3 derivative-obtained by a direct linkage between carvacrol and naproxen-resulted in the best candidate, displaying anti-obesity and anti-inflammatory effects in vitro.

9.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36835568

RESUMEN

The intestinal epithelium constitutes a selectively permeable barrier between the internal and external environment that allows the absorption of nutrients, electrolytes, and water, as well as an effective defense against intraluminal bacteria, toxins, and potentially antigenic material. Experimental evidence suggest that intestinal inflammation is critically dependent on an imbalance of homeostasis between the gut microbiota and the mucosal immune system. In this context, mast cells play a crucial role. The intake of specific probiotic strains can prevent the development of gut inflammatory markers and activation of the immune system. Here, the effect of a probiotic formulation containing L. rhamnosus LR 32, B. lactis BL04, and B. longum BB 536 on intestinal epithelial cells and mast cells was investigated. To mimic the natural host compartmentalization, Transwell co-culture models were set up. Co-cultures of intestinal epithelial cells interfaced with the human mast cell line HMC-1.2 in the basolateral chamber were challenged with lipopolysaccharide (LPS), and then treated with probiotics. In the HT29/HMC-1.2 co-culture, the probiotic formulation was able to counteract the LPS-induced release of interleukin 6 from HMC-1.2, and was effective in preserving the epithelial barrier integrity in the HT29/Caco-2/ HMC-1.2 co-culture. The results suggest the potential therapeutic effect of the probiotic formulation.


Asunto(s)
Mastocitos , Probióticos , Humanos , Técnicas de Cocultivo , Células CACO-2 , Lipopolisacáridos , Células Epiteliales , Mucosa Intestinal , Probióticos/farmacología
10.
J Clin Med ; 11(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079092

RESUMEN

Recently, the use of robotic technology in gait and balance rehabilitation of stroke patients has been introduced, with positive results. The purpose of this study was to evaluate the effectiveness of robotic gait and trunk rehabilitation compared to robotic gait training alone on balance, activities, and participation measures in patients with subacute stroke. The study was a randomized, controlled, single blind, parallel group clinical trial. Thirty-six patients with first ischemic or hemorrhagic stroke event were enrolled, and they were randomized in two groups: Gait Group (GG), where they received only robotic treatment for gait rehabilitation through an end-effector system, and Gait/Trunk Group (GTG) where they performed end-effector gait rehabilitation and balance with a robotic platform, 3 times/week for 12 sessions/month. At the end of the study, there was an improvement in balance ability in both groups. Instead, the lower limb muscle strength and muscle tone significantly improved only in the GTG group, where we found a significant reduction in the trunk oscillations and displacement during dynamic exercises more than the GG group. The robotic platform which was added to the gait robotic treatment offers more intense and controlled training of the trunk that positively influences the tone and strength of lower limb muscles.

11.
Cells ; 11(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36010692

RESUMEN

In healthy individuals, tight junction proteins (TJPs) maintain the integrity of the intestinal barrier. Dysbiosis and increased intestinal permeability are observed in several diseases, such as inflammatory bowel disease. Many studies highlight the role of probiotics in preventing intestinal barrier dysfunction. The present study aims to investigate the effects of a commercially available probiotic formulation of L. rhamnosus LR 32, B. lactis BL 04, and B. longum BB 536 (Serobioma, Bromatech s.r.l., Milan, Italy) on TJPs and the integrity of the intestinal epithelial barrier, and the ability of this formulation to prevent lipopolysaccharide-induced, inflammation-associated damage. An in vitro model of the intestinal barrier was developed using a Caco-2 cell monolayer. The mRNA expression levels of the TJ genes were analyzed using real-time PCR. Changes in the amounts of proteins were assessed with Western blotting. The effect of Serobioma on the intestinal epithelial barrier function was assessed using transepithelial electrical resistance (TEER) measurements. The probiotic formulation tested in this study modulates the expression of TJPs and prevents inflammatory damage. Our findings provide new insights into the mechanisms by which probiotics are able to prevent damage to the gut epithelial barrier.


Asunto(s)
Mucosa Intestinal , Probióticos , Células CACO-2 , Humanos , Mucosa Intestinal/metabolismo , Permeabilidad , Probióticos/farmacología , Proteínas de Uniones Estrechas/metabolismo
12.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35215340

RESUMEN

The main antimicrobial resistance (AMR) nosocomial strains (ESKAPE pathogens such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are the most widespread bacteria in cutaneous infections. In this work we report the synthesis, in silico skin permeability prediction, antimicrobial, antibiofilm, and wound healing properties of novel cinnamic acid-based antimicrobials (DM1-11) as novel antibacterial drugs for the treatment of ESKAPE-related skin infections. Antimicrobial and wound healing scratch assays were performed to evaluate the antibacterial properties of DM1-11. In silico skin permeability capabilities of DM1-11 were evaluated using Swiss-ADME online database. Cytotoxicity assays were performed on keratinocytes and fibroblasts. DM2, bearing a catechol group on the aromatic ring of the cinnamic portion of the molecule, possesses a significant antibacterial activity against S. aureus (MIC range 16-64 mg/L) and contrasts the biofilm-mediated S. epidermidis infection at low concentrations. Wound healing assays showed that wound closure in 48 h was observed in DM2-treated keratinocytes with a better healing pattern at all the used concentrations (0.1, 1.0, and 10 µM). A potential good skin permeation for DM2, that could guarantee its effectiveness at the target site, was also observed. Cytotoxicity studies revealed that DM2 may be a safe compound for topical use. Taking together all these data confirm that DM2 could represent a safe wound-healing topical agent for the treatment of skin wound infections caused by two of main Gram-positive bacteria belonging to ESKAPE microorganisms.

13.
Sci Rep ; 11(1): 23097, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845265

RESUMEN

Reach&grasp requires highly coordinated activation of different brain areas. We investigated whether reach&grasp kinematics is associated to EEG-based networks changes. We enrolled 10 healthy subjects. We analyzed the reach&grasp kinematics of 15 reach&grasp movements performed with each upper limb. Simultaneously, we obtained a 64-channel EEG, synchronized with the reach&grasp movement time points. We elaborated EEG signals with EEGLAB 12 in order to obtain event related synchronization/desynchronization (ERS/ERD) and lagged linear coherence between Brodmann areas. Finally, we evaluated network topology via sLORETA software, measuring network local and global efficiency (clustering and path length) and the overall balance (small-worldness). We observed a widespread ERD in α and ß bands during reach&grasp, especially in the centro-parietal regions of the hemisphere contralateral to the movement. Regarding functional connectivity, we observed an α lagged linear coherence reduction among Brodmann areas contralateral to the arm involved in the reach&grasp movement. Interestingly, left arm movement determined widespread changes of α lagged linear coherence, specifically among right occipital regions, insular cortex and somatosensory cortex, while the right arm movement exerted a restricted contralateral sensory-motor cortex modulation. Finally, no change between rest and movement was found for clustering, path length and small-worldness. Through a synchronized acquisition, we explored the cortical correlates of the reach&grasp movement. Despite EEG perturbations, suggesting that the non-dominant reach&grasp network has a complex architecture probably linked to the necessity of a higher visual control, the pivotal topological measures of network local and global efficiency remained unaffected.


Asunto(s)
Electroencefalografía/métodos , Fuerza de la Mano/fisiología , Movimiento/fisiología , Neurociencias/métodos , Adulto , Fenómenos Biomecánicos , Encéfalo/fisiología , Mapeo Encefálico , Femenino , Humanos , Corteza Insular , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Corteza Motora/fisiología , Vías Nerviosas , Lóbulo Parietal , Desempeño Psicomotor/fisiología , Reproducibilidad de los Resultados , Programas Informáticos , Corteza Somatosensorial/fisiología
14.
Biomolecules ; 11(9)2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34572524

RESUMEN

Advances over the past decade have improved our understanding of the role of sphingolipid in the onset and progression of Parkinson's disease. Much attention has been paid to ceramide derived molecules, especially glucocerebroside, and little on sphingomyelin, a critical molecule for brain physiopathology. Sphingomyelin has been proposed to be involved in PD due to its presence in the myelin sheath and for its role in nerve impulse transmission, in presynaptic plasticity, and in neurotransmitter receptor localization. The analysis of sphingomyelin-metabolizing enzymes, the development of specific inhibitors, and advanced mass spectrometry have all provided insight into the signaling mechanisms of sphingomyelin and its implications in Parkinson's disease. This review describes in vitro and in vivo studies with often conflicting results. We focus on the synthesis and degradation enzymes of sphingomyelin, highlighting the genetic risks and the molecular alterations associated with Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson/metabolismo , Esfingomielinas/metabolismo , Animales , Encéfalo/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Metaboloma , Modelos Biológicos , Enfermedad de Parkinson/genética
15.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502192

RESUMEN

The release of exosomes can lead to cell-cell communication. Nutrients such as vitamin D3 and sphingolipids have important roles in many cellular functions, including proliferation, differentiation, senescence, and cancer. However, the specific composition of sphingolipids in exosomes and their changes induced by vitamin D3 treatment have not been elucidated. Here, we initially observed neutral sphingomyelinase and vitamin D receptors in exosomes released from HN9.10 embryonic hippocampal cells. Using ultrafast liquid chromatography tandem mass spectrometry, we showed that exosomes are rich in sphingomyelin species compared to whole cells. To interrogate the possible functions of vitamin D3, we established the optimal conditions of cell treatment and we analyzed exosome composition. Vitamin D3 was identified as responsible for the vitamin D receptor loss, for the increase in neutral sphingomyelinase content and sphingomyelin changes. As a consequence, the generation of ceramide upon vitamin D3 treatment was evident. Incubation of the cells with neutral sphingomyelinase, or the same concentration of ceramide produced in exosomes was necessary and sufficient to stimulate embryonic hippocampal cell differentiation, as vitamin D3. This is the first time that exosome ceramide is interrogated for mediate the effect of vitamin D3 in inducing cell differentiation.


Asunto(s)
Diferenciación Celular , Ceramidas/metabolismo , Colecalciferol/farmacología , Exosomas/metabolismo , Hipocampo/metabolismo , Vitaminas/farmacología , Células Cultivadas , Exosomas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Humanos , Receptores de Calcitriol/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo
16.
Clin Biomech (Bristol, Avon) ; 89: 105454, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482068

RESUMEN

BACKGROUND: Total hip replacement with minimally invasive direct anterior approach using the "Smith Petersen" interval is an alternative technique to conventional surgery aimed at preserving the integrity of the muscles around the hip joint. This study aimed to observe hip biomechanics, gait variables, hip muscle activation and locomotor performance during three locomotor tasks (forward, lateral, and backward walking), in subjects who undergo total hip arthroplasty with direct anterior approach. METHODS: Fourteen patients with primary osteoarthritis who underwent direct anterior approach were included in the study. The optoelectronic 3-D motion analysis system integrated with an electromyography surface device was used to acquire the biomechanics of patients before surgery and at 3 and 6 months post-surgery. Spatio-temporal, dynamic, and hip muscle electromyographic parameters were analyzed and compared whit those of healthy controls. FINDINGS: Almost all gait parameters improved after surgery. The majority of gait variables neared to the control group at 6 months, while the hip joint range of motion did not. The abnormally increased activation of the muscles around the hip joint was reduced at 6 months post-surgery during all three locomotor tasks. Conversely, the altered gait phase-related electromyographic pattern did not change after the surgery. INTERPRETATION: Our results indicate that hip and gait function during several locomotor tasks improved after surgery, while simultaneously either preserve or restore the muscle activation around the hip joint. A full biomechanical evaluation of the hip function during locomotion may aid physicians and surgeons in optimizing the management of patients before and after hip replacement surgery.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Fenómenos Biomecánicos , Marcha , Articulación de la Cadera/diagnóstico por imagen , Articulación de la Cadera/cirugía , Humanos , Músculo Esquelético , Rango del Movimiento Articular , Caminata
17.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281186

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative motor disorder characterized by selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain, depletion of dopamine (DA), and impaired nigrostriatal pathway. The pathological hallmark of PD includes the aggregation and accumulation α-synuclein (α-SYN). Although the precise mechanisms underlying the pathogenesis of PD are still unknown, the activation of toll-like receptors (TLRs), mainly TLR4 and subsequent neuroinflammatory immune response, seem to play a significant role. Mounting evidence suggests that viral infection can concur with the precipitation of PD or parkinsonism. The recently identified coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of ongoing pandemic coronavirus disease 2019 (COVID-19), responsible for 160 million cases that led to the death of more than three million individuals worldwide. Studies have reported that many patients with COVID-19 display several neurological manifestations, including acute cerebrovascular diseases, conscious disturbance, and typical motor and non-motor symptoms accompanying PD. In this review, the neurotropic potential of SARS-CoV-2 and its possible involvement in the pathogenesis of PD are discussed. Specifically, the involvement of the TLR4 signaling pathway in mediating the virus entry, as well as the massive immune and inflammatory response in COVID-19 patients is explored. The binding of SARS-CoV-2 spike (S) protein to TLR4 and the possible interaction between SARS-CoV-2 and α-SYN as contributing factors to neuronal death are also considered.


Asunto(s)
COVID-19/fisiopatología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/virología , SARS-CoV-2/metabolismo , Receptor Toll-Like 4/metabolismo , COVID-19/metabolismo , Humanos , Enfermedad de Parkinson/genética , SARS-CoV-2/genética , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/fisiología
18.
Front Bioeng Biotechnol ; 9: 666683, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968917

RESUMEN

Space travel is an extreme experience even for the astronaut who has received extensive basic training in various fields, from aeronautics to engineering, from medicine to physics and biology. Microgravity puts a strain on members of space crews, both physically and mentally: short-term or long-term travel in orbit the International Space Station may have serious repercussions on the human body, which may undergo physiological changes affecting almost all organs and systems, particularly at the muscular, cardiovascular and bone compartments. This review aims to highlight recent studies describing damages of human body induced by the space environment for microgravity, and radiation. All novel conditions, to ally unknown to the Darwinian selection strategies on Earth, to which we should add the psychological stress that astronauts suffer due to the inevitable forced cohabitation in claustrophobic environments, the deprivation from their affections and the need to adapt to a new lifestyle with molecular changes due to the confinement. In this context, significant nutritional deficiencies with consequent molecular mechanism changes in the cells that induce to the onset of physiological and cognitive impairment have been considered.

19.
PLoS One ; 16(2): e0244396, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606730

RESUMEN

INTRODUCTION: Gait deficits are debilitating in people with Parkinson's disease (PwPD), which inevitably deteriorate over time. Gait analysis is a valuable method to assess disease-specific gait patterns and their relationship with the clinical features and progression of the disease. OBJECTIVES: Our study aimed to i) develop an automated diagnostic algorithm based on machine-learning techniques (artificial neural networks [ANNs]) to classify the gait deficits of PwPD according to disease progression in the Hoehn and Yahr (H-Y) staging system, and ii) identify a minimum set of gait classifiers. METHODS: We evaluated 76 PwPD (H-Y stage 1-4) and 67 healthy controls (HCs) by computerized gait analysis. We computed the time-distance parameters and the ranges of angular motion (RoMs) of the hip, knee, ankle, trunk, and pelvis. Principal component analysis was used to define a subset of features including all gait variables. An ANN approach was used to identify gait deficits according to the H-Y stage. RESULTS: We identified a combination of a small number of features that distinguished PwPDs from HCs (one combination of two features: knee and trunk rotation RoMs) and identified the gait patterns between different H-Y stages (two combinations of four features: walking speed and hip, knee, and ankle RoMs; walking speed and hip, knee, and trunk rotation RoMs). CONCLUSION: The ANN approach enabled automated diagnosis of gait deficits in several symptomatic stages of Parkinson's disease. These results will inspire future studies to test the utility of gait classifiers for the evaluation of treatments that could modify disease progression.


Asunto(s)
Trastornos Neurológicos de la Marcha/diagnóstico , Marcha/fisiología , Redes Neurales de la Computación , Enfermedad de Parkinson/diagnóstico , Anciano , Fenómenos Biomecánicos/fisiología , Femenino , Análisis de la Marcha/métodos , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Índice de Severidad de la Enfermedad
20.
Cancers (Basel) ; 12(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126474

RESUMEN

Glioblastoma is one the most aggressive primary brain tumors in adults, and, despite the fact that radiation and chemotherapy after surgical approaches have been the treatments increasing the survival rates, the prognosis of patients remains poor. Today, the attention is focused on highlighting complementary treatments that can be helpful in improving the classic therapeutic approaches. It is known that 1α,25(OH)2 vitamin D3, a molecule involved in bone metabolism, has many serendipidy effects in cells. It targets normal and cancer cells via genomic pathway by vitamin D3 receptor or via non-genomic pathways. To interrogate possible functions of 1α,25(OH)2 vitamin D3 in multiforme glioblastoma, we used three cell lines, wild-type p53 GL15 and mutant p53 U251 and LN18 cells. We demonstrated that 1α,25(OH)2 vitamin D3 acts via vitamin D receptor in GL15 cells and via neutral sphingomyelinase1, with an enrichment of ceramide pool, in U251 and LN18 cells. Changes in sphingomyelin/ceramide content were considered to be possibly responsible for the differentiating and antiproliferative effect of 1α,25(OH)2 vitamin D in U251 and LN18 cells, as shown, respectively, in vitro by immunofluorescence and in vivo by experiments of xenotransplantation in eggs. This is the first time 1α,25(OH)2 vitamin D3 is interrogated for the response of multiforme glioblastoma cells in dependence on the p53 mutation, and the results define neutral sphingomyelinase1 as a signaling effector.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA