Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Control Release ; 374: 425-440, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39103056

RESUMEN

For medical emergencies, such as acute ischemic stroke, rapid drug delivery to the target site is essential. For many small molecule drugs, this goal is unachievable due to poor solubility that prevents intravenous administration, and less obviously, by extensive partitioning to plasma proteins and red blood cells (RBCs), which greatly slows delivery to the target. Here we study these effects and how they can be solved by loading into nanoscale drug carriers. We focus on fingolimod, a small molecule drug that is FDA-approved for treatment of multiple sclerosis, which has also shown promise in the treatment of stroke. Unfortunately, fingolimod has poor solubility and very extensive partitioning to plasma proteins and RBCs (in whole blood, 86% partitions to RBCs, 13.96% to plasma proteins, and 0.04% is free). We develop a liposomal formulation that slows the partitioning of fingolimod to RBCs and plasma proteins, enables intravenous delivery, and additionally prevents fingolimod toxicity to RBCs. The liposomal formulation nearly completely prevented fingolimod adsorption to plasma proteins (association with plasma proteins was 98.4 ± 0.4% for the free drug vs. 5.6 ± 0.4% for liposome-loaded drug). When incubated with whole blood in vitro, the liposomal formulation greatly slowed partitioning of fingolimod to RBCs and also eliminated deleterious effects of fingolimod on RBC rigidity, morphology, and hemolysis. In vivo, the liposomal formulation delayed fingolimod partitioning to RBCs for over 30 min, a critical time window for stroke. Fingolimod-loaded liposomes showed improved efficacy in a mouse model of post-stroke neuroinflammation, completely sealing the leaky blood-brain barrier (114 ± 11.5% reduction in albumin leak into the brain for targeted liposomes vs. 38 ± 16.5% reduction for free drug). This effect was only seen for liposomes modified with antibodies to enable targeted delivery to the site of action, and not in unmodified, long-circulating liposomes. Thus, loading fingolimod into liposomes prevented partitioning to RBCs and associated toxicities and enabled targeted delivery. This paradigm can be used for tuning the blood distribution of small molecule drugs for the treatment of acute illnesses requiring rapid pharmacologic intervention.


Asunto(s)
Proteínas Sanguíneas , Portadores de Fármacos , Eritrocitos , Clorhidrato de Fingolimod , Liposomas , Animales , Clorhidrato de Fingolimod/administración & dosificación , Clorhidrato de Fingolimod/farmacocinética , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Portadores de Fármacos/química , Proteínas Sanguíneas/metabolismo , Masculino , Nanopartículas , Inmunosupresores/administración & dosificación , Inmunosupresores/farmacocinética , Ratones , Ratones Endogámicos C57BL , Humanos , Sistemas de Liberación de Medicamentos
2.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125875

RESUMEN

Parasites have been associated with possible anticancer activity, including Trypanosoma cruzi, which has been linked to inhibiting the growth of solid tumors. To better understand this antitumor effect, we investigated the association of anti-T. cruzi antibodies with B cells of the acute lymphoblastic leukemia (ALL) SUPB15 cell line. The antibodies were generated in rabbits. IgGs were purified by affinity chromatography. Two procedures (flow cytometry (CF) and Western blot(WB)) were employed to recognize anti-T. cruzi antibodies on SUPB15 cells. We also used CF to determine whether the anti-T. cruzi antibodies could suppress SUPB15 cells. The anti-T. cruzi antibodies recognized 35.5% of the surface antigens of SUPB15. The complement-dependent cytotoxicity (CDC) results demonstrate the cross-suppression of anti-T. cruzi antibodies on up to 8.4% of SUPB15 cells. For the WB analysis, a band at 100 kDa with high intensity was sequenced using mass spectrometry, identifying the protein as nucleolin. This protein may play a role in the antitumor effect on T. cruzi. The anti-T. cruzi antibodies represent promising polyclonal antibodies that have the effect of tumor-suppressive cross-linking on cancer cells, which should be further investigated.


Asunto(s)
Anticuerpos Antiprotozoarios , Leucemia-Linfoma Linfoblástico de Células Precursoras , Trypanosoma cruzi , Trypanosoma cruzi/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Humanos , Línea Celular Tumoral , Animales , Conejos , Anticuerpos Antiprotozoarios/inmunología , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/metabolismo , Nucleolina , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo
3.
ACS Nano ; 18(33): 22275-22297, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105696

RESUMEN

Nanomedicine has long pursued the goal of targeted delivery to specific organs and cell types but has yet to achieve this goal with the vast majority of targets. One rare example of success in this pursuit has been the 25+ years of studies targeting the lung endothelium using nanoparticles conjugated to antibodies against endothelial surface molecules. However, here we show that such "endothelial-targeted" nanocarriers also effectively target the lungs' numerous marginated neutrophils, which reside in the pulmonary capillaries and patrol for pathogens. We show that marginated neutrophils' uptake of many of these "endothelial-targeted" nanocarriers is on par with endothelial uptake. This generalizes across diverse nanomaterials and targeting moieties and was even found with physicochemical lung tropism (i.e., without targeting moieties). Further, we observed this in ex vivo human lungs and in vivo healthy mice, with an increase in marginated neutrophil uptake of nanoparticles caused by local or distant inflammation. These findings have implications for nanomedicine development for lung diseases. These data also suggest that marginated neutrophils, especially in the lungs, should be considered a major part of the reticuloendothelial system (RES), with a special role in clearing nanoparticles that adhere to the lumenal surfaces of blood vessels.


Asunto(s)
Pulmón , Nanopartículas , Neutrófilos , Animales , Neutrófilos/metabolismo , Neutrófilos/inmunología , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Nanopartículas/química , Sistema Mononuclear Fagocítico/metabolismo , Endotelio/metabolismo , Ratones Endogámicos C57BL , Nanomedicina
4.
Eur J Immunol ; : e2350716, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837757

RESUMEN

Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut.

5.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1569784

RESUMEN

El sangrado uterino anormal tiene una etiología variable, que va desde causas estructurales hasta causas funcionales, que se describen clásicamente en el acrónimo PALM-COEIN. No obstante, hay una pobre sensibilización de este síntoma como un marcador de enfermedades graves. En esta revisión se describe la relación de la hemorragia uterina anormal como síntoma clave o de presentación de malignidad hematológica, así como la posible relación con la hemofilia adquirida secundaria a neoplasia hematológica como causal del evento hemostático. Se realizó búsqueda en la literatura, con la mayoría de los artículos obtenidos de Medline, 24 de los cuales cumplieron con los objetivos para resolver la pregunta de investigación. Se encontraron diferentes malignidades hematológicas asociadas a sangrado uterino anormal, de las cuales la hemofilia adquirida y la trombocitopenia como potenciales causales de esta; la mayor correlación fue con leucemia, seguido de linfomas, y en menor cuantía la asociación con mieloma múltiple.


Abnormal uterine bleeding has a variable etiology, ranging from structural to functional causes, classically described by the acronym PALM-COEIN. However, there is poor awareness of this symptom as a marker of serious disease; in this review, we describe the relationship of abnormal uterine bleeding as a key symptom or debut of hematologic malignancy, as well as its possible relationship to acquired hemophilia secondary to hematologic neoplasia as causative of the hemostatic event. A literature search was performed, with most of the articles obtained from Medline, 24 of which met the objectives to solve the research question. Different hematological malignancies associated with abnormal uterine bleeding were found, of which acquired hemophilia and thrombocytopenia were found as potential causes; the highest correlation was with leukemia, followed by lymphomas, and to a lesser extent the association with multiple myeloma.

6.
PLoS One ; 19(6): e0297451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38857220

RESUMEN

Traumatic brain injury has faced numerous challenges in drug development, primarily due to the difficulty of effectively delivering drugs to the brain. However, there is a potential solution in targeted drug delivery methods involving antibody-drug conjugates or nanocarriers conjugated with targeting antibodies. Following a TBI, the blood-brain barrier (BBB) becomes permeable, which can last for years and allow the leakage of harmful plasma proteins. Consequently, an appealing approach for TBI treatment involves using drug delivery systems that utilize targeting antibodies and nanocarriers to help restore BBB integrity. In our investigation of this strategy, we examined the efficacy of free antibodies and nanocarriers targeting a specific endothelial surface marker called vascular cell adhesion molecule-1 (VCAM-1), which is known to be upregulated during inflammation. In a mouse model of TBI utilizing central fluid percussion injury, free VCAM-1 antibody did not demonstrate superior targeting when comparing sham vs. TBI brain. However, the administration of VCAM-1-targeted nanocarriers (liposomes) exhibited a 10-fold higher targeting specificity in TBI brain than in sham control. Flow cytometry and confocal microscopy analysis confirmed that VCAM-1 liposomes were primarily taken up by brain endothelial cells post-TBI. Consequently, VCAM-1 liposomes represent a promising platform for the targeted delivery of therapeutics to the brain following traumatic brain injury.


Asunto(s)
Barrera Hematoencefálica , Lesiones Traumáticas del Encéfalo , Nanopartículas , Molécula 1 de Adhesión Celular Vascular , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Nanopartículas/química , Liposomas , Masculino , Sistemas de Liberación de Medicamentos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos
7.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892345

RESUMEN

Overuse of antimicrobials has greatly contributed to the increase in the emergence of multidrug-resistant bacteria, a situation that hinders the control and treatment of infectious diseases. This is the case with urinary tract infections (UTIs), which represent a substantial percentage of worldwide public health problems, thus the need to look for alternatives for their control and treatment. Previous studies have shown the usefulness of autologous bacterial lysates as an alternative for the treatment and control of UTIs. However, a limitation is the high cost of producing individual immunogens. At the same time, an important aspect of vaccines is their immunogenic amplitude, which is the reason why they must be constituted of diverse antigenic components. In the case of UTIs, the etiology of the disease is associated with different bacteria, and even Escherichia coli, the main causal agent of the disease, is made up of several antigenic variants. In this work, we present results on the study of a bacterial lysate composed of 10 serotypes of Escherichia coli and by Klebsiella pneumoniae, Klebsiella aerogenes, Enterococcus faecalis, Proteus mirabilis, Citrobacter freundii, and Staphylococcus haemolyticus. The safety of the compound was tested on cells in culture and in an animal model, and its immunogenic capacity by analysing in vitro human and murine macrophages (cell line J774 A1). The results show that the polyvalent lysate did not cause damage to the cells in culture or alterations in the animal model used. The immunostimulatory activity assay showed that it activates the secretion of TNF-α and IL-6 in human macrophages and TNF-α in murine cells. The obtained results suggest that the polyvalent lysate evaluated can be an alternative for the treatment and control of chronic urinary tract infections, which will reduce the use of antimicrobials.


Asunto(s)
Infecciones Urinarias , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Infecciones Urinarias/inmunología , Infecciones Urinarias/terapia , Animales , Humanos , Ratones , Escherichia coli , Femenino , Extractos Celulares/farmacología , Extractos Celulares/uso terapéutico , Lisados Bacterianos
8.
Front Oncol ; 14: 1356581, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567159

RESUMEN

Cervical cancer (CC) is a significant health problem, especially in low-income countries. Functional studies on the human papillomavirus have generated essential advances in the knowledge of CC. However, many unanswered questions remain. This mini-review discusses the latest results on CC pathogenesis, HPV oncogenesis, and molecular changes identified through next-generation technologies. Interestingly, the percentage of samples with HPV genome integrations correlates with the degree of the cervical lesions, suggesting a role in the development of CC. Also, new functions have been described for the viral oncoproteins E5, E6, and E7, resulting in the acquisition and maintenance of cancer hallmarks, including proliferation, immune response evasion, apoptosis, and genomic instability. Remarkably, E5 oncoprotein affects signaling pathways involved in the expression of interferon-induced genes and EGFR-induced proliferation, while E6 and E7 oncoproteins regulate the DNA damage repair and cell cycle continuity pathways. Furthermore, next-generation technologies provide vast amounts of information, increasing our knowledge of changes in the genome, transcriptome, proteome, metabolome, and epigenome in CC. These studies have identified novel molecular traits associated with disease susceptibility, degree of progression, treatment response, and survival as potential biomarkers and therapeutic targets.

9.
Arterioscler Thromb Vasc Biol ; 44(6): 1393-1406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660804

RESUMEN

BACKGROUND: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS: To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-; low-density lipoprotein receptor) backgrounds. RESULTS: Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 (prostaglandin E) and PGD2 (prostanglandin D), activation of the inflammasome, elevated plasma levels of IL-1ß (interleukin), reduced plasma levels of HDL-C (high-density lipoprotein receptor-cholesterol), and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS: Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.


Asunto(s)
Plaquetas , Ciclooxigenasa 1 , Modelos Animales de Enfermedad , Integrasas , Ratones Endogámicos C57BL , Ratones Noqueados , Agregación Plaquetaria , Factor Plaquetario 4 , Receptores de LDL , Animales , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/deficiencia , Agregación Plaquetaria/efectos de los fármacos , Factor Plaquetario 4/genética , Factor Plaquetario 4/metabolismo , Integrasas/genética , Receptores de LDL/genética , Receptores de LDL/deficiencia , Masculino , Ratones , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/enzimología , Aterosclerosis/prevención & control , Aterosclerosis/sangre , Hiperlipidemias/sangre , Hiperlipidemias/genética , Hiperlipidemias/enzimología , Fenotipo , Proteínas de la Membrana , Complejo GPIb-IX de Glicoproteína Plaquetaria
10.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659905

RESUMEN

Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions. We show that LNPs' hallmark feature, endosomal escape, which is necessary for RNA expression, also directly triggers inflammation by causing endosomal membrane damage. Large, irreparable, endosomal holes are recognized by cytosolic proteins called galectins, which bind to sugars on the inner endosomal membrane and then regulate downstream inflammation. We find that inhibition of galectins abrogates LNP-associated inflammation, both in vitro and in vivo . We show that rapidly biodegradable ionizable lipids can preferentially create endosomal holes that are smaller in size and reparable by the endosomal sorting complex required for transport (ESCRT) pathway. Ionizable lipids producing such ESCRT-recruiting endosomal holes can produce high expression from cargo mRNA with minimal inflammation. Finally, we show that both routes to non-inflammatory LNPs, either galectin inhibition or ESCRT-recruiting ionizable lipids, are compatible with therapeutic mRNAs that ameliorate inflammation in disease models. LNPs without galectin inhibition or biodegradable ionizable lipids lead to severe exacerbation of inflammation in these models. In summary, endosomal escape induces endosomal membrane damage that can lead to inflammation. However, the inflammation can be controlled by inhibiting galectins (large hole detectors) or by using biodegradable lipids, which create smaller holes that are reparable by the ESCRT pathway. These strategies should lead to generally safer LNPs that can be used to treat inflammatory diseases.

11.
Nano Lett ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598417

RESUMEN

Two camps have emerged for targeting nanoparticles to specific organs and cell types: affinity moiety targeting and physicochemical tropism. Here we directly compare and combine both using intravenous (IV) lipid nanoparticles (LNPs) designed to target the lungs. We utilized PECAM antibodies as affinity moieties and cationic lipids for physicochemical tropism. These methods yield nearly identical lung uptake, but aPECAM LNPs show higher endothelial specificity. LNPs combining these targeting methods had >2-fold higher lung uptake than either method alone and markedly enhanced epithelial uptake. To determine if lung uptake is because the lungs are the first organ downstream of IV injection, we compared IV vs intra-arterial (IA) injection into the carotid artery, finding that IA combined-targeting LNPs achieve 35% of the injected dose per gram (%ID/g) in the first-pass organ, the brain, among the highest reported. Thus, combining the affinity moiety and physicochemical strategies provides benefits that neither targeting method achieves alone.

12.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38454606

RESUMEN

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Liposomas , Nanopartículas , Molécula 1 de Adhesión Celular Vascular , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Animales , Ratones , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Nanopartículas/química , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Lípidos/química , Sistemas de Liberación de Medicamentos/métodos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Humanos
13.
Adv Mater ; 36(26): e2312026, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38394670

RESUMEN

Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up or down-regulate any protein of interest. LNPs have mostly been targeted to specific cell types or organs by physicochemical targeting in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. Here lung-tropic LNPs are examined, whose organ tropism derives from containing either a cationic or ionizable lipid conferring a positive zeta potential. Surprisingly, these LNPs are found to induce massive thrombosis. Such thrombosis is shown in the lungs and other organs, and it is shown that it is greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles, and even by lung-tropic ionizable lipids that do not have a permanent cationic charge. The mechanism depends on the LNPs binding to and then changing the conformation of fibrinogen, which then activates platelets and thrombin. Based on these mechanisms, multiple solutions are engineered that enable positively charged LNPs to target the lungs while ameliorating thrombosis. The findings illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.


Asunto(s)
Coagulación Sanguínea , Lípidos , Pulmón , Nanopartículas , Trombosis , Nanopartículas/química , Pulmón/metabolismo , Animales , Coagulación Sanguínea/efectos de los fármacos , Trombosis/tratamiento farmacológico , Trombosis/metabolismo , Lípidos/química , Trombina/metabolismo , Trombina/química , Humanos , Fibrinógeno/química , Fibrinógeno/metabolismo , Ratones
14.
Diseases ; 11(4)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37987271

RESUMEN

Staphylococcus aureus (S. aureus) is a common pathogen involved in community- and hospital-acquired infections. Its biofilm formation ability predisposes it to device-related infections. Methicillin-resistant S. aureus (MRSA) strains are associated with more serious infections and higher mortality rates and are more complex in terms of antibiotic resistance. It is still controversial whether MRSA are indeed more virulent than methicillin-susceptible S. aureus (MSSA) strains. A difference in biofilm formation by both types of bacteria has been suggested, but how only the presence of the SCCmec cassette or mecA influences this phenotype remains unclear. In this review, we have searched for literature studying the difference in biofilm formation by MRSA and MSSA. We highlighted the relevance of the icaADBC operon in the PIA-dependent biofilms generated by MSSA under osmotic stress conditions, and the role of extracellular DNA and surface proteins in the PIA-independent biofilms generated by MRSA. We described the prominent role of surface proteins with the LPXTG motif and hydrolases for the release of extracellular DNA in the MRSA biofilm formation. Finally, we explained the main regulatory systems in S. aureus involved in virulence and biofilm formation, such as the SarA and Agr systems. As most of the studies were in vitro using inert surfaces, it will be necessary in the future to focus on biofilm formation on extracellular matrix components and its relevance in the pathogenesis of infection by both types of strains using in vivo animal models.

15.
J Vis Exp ; (199)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37811962

RESUMEN

The vertebral column defines a vertebrate and shapes the spinal canal, a cavity that encloses and safeguards the spinal cord. Proper development and function of the mammalian central nervous system rely significantly on the activity of resident macrophages known as microglia. Microglia display heterogeneity and multifunctionality, enabling distinct gene expression and behavior within the spinal cord and brain. Numerous studies have explored cerebral microglia function, detailing purification methods extensively. However, the purification of microglia from the spinal cord in mice lacks a comprehensive description. In contrast, the utilization of a highly purified collagenase, as opposed to an unrefined extract, lacks reporting within central nervous system tissues. In this study, the vertebral column and spinal cord were excised from 8-10 week-old C57BL/6 mice. Subsequent digestion employed a highly purified collagenase, and microglia purification utilized a density gradient. Cells underwent staining for flow cytometry, assessing viability and purity through CD11b and CD45 staining. Results yielded an average viability of 80% and a mean purity of 95%. In conclusion, manipulation of mouse microglia involved digestion with a highly purified collagenase, followed by a density gradient. This approach effectively produced substantial spinal cord microglia populations.


Asunto(s)
Microglía , Traumatismos de la Médula Espinal , Ratones , Animales , Microglía/metabolismo , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Médula Espinal/metabolismo , Colagenasas/metabolismo , Mamíferos
16.
Polymers (Basel) ; 15(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37896349

RESUMEN

In this study, we synthesized and characterized pH-responsive Chitosan-AgCl-doped ZnO hybrid hydrogels and evaluated their potential for loading aquaculture bioactive compounds, and assessed their antimicrobial properties against a threatening pathogen associated with disease across a broad spectrum of warm water fish and invertebrates. Hydrogel characterization consisted of assessing morphology via SEM, composition via EDS, hydrogels' network components interactions via FT-IR and pH response through swelling behavior determinations. The swelling characterization of the synthesized hydrogels demonstrated a pH-responsive behavior, showing that low pH values caused the hydrogel polymeric network to expand and capture more of the aqueous solution. These characteristics make the synthesized hydrogels suitable for the encapsulation and controlled release of drugs and bioactive compounds in aquaculture. Chitosan_ZnO hybrid hydrogels showed great antimicrobial activity against Vibrio harveyi, even better than that of loaded PB hydrogels. Here, we provide evidence for the potential capacity of Chitosan_ZnO hybrid hydrogels for the preventive and curative treatment of diseases that impact aquaculture animal health and prevent drug resistance by bacteria.

17.
Mol Pharm ; 20(11): 5476-5485, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37823223

RESUMEN

Thromboprophylaxis is indicated in patients at an elevated risk of developing thrombotic disorders, typically using direct oral anticoagulants or low-molecular-weight heparins. We postulated that transient thromboprophylaxis (days-weeks) could be provided by a single dose of an anticoagulant engineered for prolonged pharmacokinetics. In the present work, d-phenylalanyl-l-prolyl-l-arginine chloromethyl ketone (PPACK) was used as a model anticoagulant to test the hypothesis that conjugation of thrombin inhibitors to the surface of albumin would provide durable protection against thrombotic insults. Covalent conjugates were formed between albumin and PPACK using click chemistry, and they were tested in vitro using a thrombin activity assay and a clot formation assay. Thromboprophylactic efficacy was tested in mouse models of arterial thrombosis, both chemically induced (FeCl3) and following ischemia-reperfusion (transient middle cerebral artery occlusion; tMCAO). Albumin-PPACK conjugates were shown to have nanomolar potency in both in vitro assays, and following intravenous injection had prolonged circulation. Conjugates did not impact hemostasis (tail clipping) or systemic coagulation parameters in normal mice. Intravenous injection of conjugates prior to FeCl3-induced thrombosis provided significant protection against occlusion of the middle cerebral and common carotid arteries, and injection immediately following ischemia-reperfusion reduced stroke volume measured 3 days after injury by ∼40% in the tMCAO model. The data presented here provide support for the use of albumin-linked anticoagulants as an injectable, long-circulating, safe thromboprophylactic agent. In particular, albumin-PPACK provides significant protection against thrombosis induced by multiple mechanisms, without adversely affecting hemostasis.


Asunto(s)
Trombosis , Tromboembolia Venosa , Humanos , Ratones , Animales , Anticoagulantes/uso terapéutico , Trombina/uso terapéutico , Tromboembolia Venosa/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Clorometilcetonas de Aminoácidos/farmacología , Clorometilcetonas de Aminoácidos/uso terapéutico , Isquemia
19.
Rev Colomb Psiquiatr (Engl Ed) ; 52(3): 245-250, 2023.
Artículo en Inglés, Español | MEDLINE | ID: mdl-37863769

RESUMEN

INTRODUCTION: The detection of anxiety symptoms among health workers who care for patients infected with COVID-19 is a current priority. Fast and valid instruments are required for this population group. The objective is to establish the construct validity and reliability of the Generalised Anxiety Disorder (GAD-7) scale in Colombian doctors during the COVID-19 lockdown. METHODS: E-health study, in which cross-sectional data were collected online (n = 1030) from 610 COVID doctors and 420 non-COVID doctors, during the Colombian lockdown, between 20 April and 10 August 2020. Each subject was contacted, and they confirmed their participation, identity and professional role. RESULTS: A single factor factorial structure was found, made up of the 7 items of the instrument, which managed to explain 70% of the variance. The goodness of fit indices (RMSEA = 0.080; CFI = 0.995; SRMR = 0.053; p < 0.001) showed an "acceptable" unidimensionality and adequate factor loadings in each item of the GAD-7, >0.070. Finally, the internal consistency of the instrument was good, with a Cronbach's alpha of 0.920 (95%IC, 8.80-9.71). CONCLUSIONS: The GAD-7 is an instrument that presents adequate indicators of validity and reliability. It is an excellent tool that is reliable and easy and fast to use for the detection of generalised anxiety symptoms in medical personnel caring (or not) for patients infected with COVID-19.


Asunto(s)
COVID-19 , Cuestionario de Salud del Paciente , Humanos , Reproducibilidad de los Resultados , Estudios Transversales , Colombia , Pandemias , Encuestas y Cuestionarios , Psicometría , Control de Enfermedades Transmisibles
20.
Rev. colomb. psiquiatr ; 52(3)sept. 2023.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1536146

RESUMEN

Introducción: La detección de síntomas de ansiedad entre el personal sanitario que atiende a pacientes contagiados de COVID-19 es una prioridad actual. Se requieren instrumentos rápidos y válidos para esta población. El objetivo es establecer la validez de constructo y la confiabilidad de la Escala de Ansiedad Generalizada (GAD-7) en médicos colombianos durante la cuarentena por la COVID-19. Métodos: Estudio eSalud, en el que se recopilaron datos transversales en línea (n = 1.030) de 610 médicos de COVID y 420 no de COVID durante la cuarentena colombiana, entre el 20 de abril y el 10 de agosto de 2020. Se contactó con cada sujeto, que confirmó participación, identidad y función profesional. Resultados: Se encontró una estructura factorial de 1 solo factor, conformado por los 7 ítems del instrumento, que logró explicar el 70% de la varianza. Los índices de bondad de ajuste (RMSEA = 0,080; CFI = 0,995; SRMR = 0,053; p 0,07. Por último, la consistencia interna del instrumento fue buena, con alfa de Cronbach = 0,920 (IC95%,8,80-9,71). Conclusiones: El GAD-7 es un instrumento que presenta indicadores adecuados de validez y confiabilidad. Es un excelente instrumento, confiable, fácil y rápido de usar para la detección de los síntomas de ansiedad generalizada en personal médico, atienda o no a pacientes contagiados de COVID-19.


Introduction: The detection of anxiety symptoms among health workers who care for patients infected with COVID-19 is a current priority. Fast and valid instruments are required for this population group. The objective is to establish the construct validity and reliability of the Generalized Anxiety Disorder (GAD-7) scale in Colombian doctors during the COVID-19 lockdown. Methods: E-health study, in which cross-sectional data were collected online (n = 1,030) from 610 COVID doctors and 420 non-COVID doctors, during the Colombian lockdown, between 20 April and 10 August 2020. Each subject was contacted, and they confirmed their participation, identity and professional role. Results: A single factor factorial structure was found, made up of the 7 items of the instrument, which managed to explain 70% of the variance. The goodness of fit indices (RMSEA = 0.080; CFI = 0.995; SRMR = 0.053; p 0.070. Finally, the internal consistency of the instrument was good, with a Cronbach's alpha of 0.920 (95%IC, 8.80-9.71). Conclusions:The GAD-7 is an instrument that presents adequate indicators of validity and reliability. It is an excellent tool that is reliable and easy and fast to use for the detection of generalised anxiety symptoms in medical personnel caring (or not) for patients infected with COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA