Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39071354

RESUMEN

We addressed the question of mitochondrial lactate metabolism using genetically-encoded sensors. The organelle was found to contain a dynamic lactate pool that leads to dose- and time-dependent protein lactylation. In neurons, mitochondrial lactate reported blood lactate levels with high fidelity. The exchange of lactate across the inner mitochondrial membrane was found to be mediated by a high affinity H+-coupled transport system involving the mitochondrial pyruvate carrier MPC. Assessment of electron transport chain activity and determination of lactate flux showed that mitochondria are tonic lactate producers, a phenomenon driven by energization and stimulated by hypoxia. We conclude that an overflow mechanism caps the redox level of mitochondria, while saving energy in the form of lactate.

2.
Neurochem Res ; 45(6): 1328-1334, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32144525

RESUMEN

Glycolysis is the core of intermediate metabolism, an ancient pathway discovered in the heydays of classic biochemistry. A hundred years later, it remains a matter of active research, clinical interest and is not devoid of controversy. This review examines topical aspects of glycolysis in the brain, a tissue characterized by an extreme dependence on glucose. The limits of glycolysis are reviewed in terms of flux control by glucose transporters, intercellular lactate shuttling and activity-dependent glycolysis in astrocytes and neurons. What is the site of glycogen mobilization and aerobic glycolysis in brain tissue? We scrutinize the pervasive notions that glycolysis is fast and that catalysis is channeled through supramolecular assemblies. In brain tissue, most glycolytic enzymes are catalytically silent. What then is their function?


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Glucógeno/metabolismo , Glucólisis/fisiología , Ácido Láctico/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/química , Química Encefálica/fisiología , Metabolismo Energético/fisiología , Glucosa/análisis , Glucosa/metabolismo , Glucógeno/análisis , Humanos , Ácido Láctico/análisis , Neuronas/química , Factores de Tiempo
3.
PLoS One ; 14(10): e0224527, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31671132

RESUMEN

Mitochondrial toxicity is a primary source of pre-clinical drug attrition, black box warning and post-market drug withdrawal. Methods that detect mitochondrial toxicity as early as possible during the drug development process are required. Here we introduce a new method for detecting mitochondrial toxicity based on MDA-MB-231 cells stably expressing the genetically encoded FRET lactate indicator, Laconic. The method takes advantage of the high cytosolic lactate accumulation observed during mitochondrial stress, regardless of the specific toxicity mechanism, explained by compensatory glycolytic activation. Using a standard multi-well plate reader, dose-response curve experiments allowed the sensitivity of the methodology to detect metabolic toxicity induced by classical mitochondrial toxicants. Suitability for high-throughput screening applications was evaluated resulting in a Z'-factor > 0.5 and CV% < 20 inter-assay variability. A pilot screening allowed sensitive detection of commercial drugs that were previously withdrawn from the market due to liver/cardiac toxicity issues, such as camptothecin, ciglitazone, troglitazone, rosiglitazone, and terfenadine, in ten minutes. We envisage that the availability of this technology, based on a fluorescent genetically encoded indicator, will allow direct assessment of mitochondrial metabolism, and will make the early detection of mitochondrial toxicity in the drug development process possible, saving time and resources.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Mitocondrias/efectos de los fármacos , Pruebas de Toxicidad/métodos , Bioensayo , Línea Celular , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Ácido Láctico/metabolismo , Sensibilidad y Especificidad
4.
J Biol Chem ; 294(52): 20135-20147, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31719150

RESUMEN

Monocarboxylate transporter 4 (MCT4) is an H+-coupled symporter highly expressed in metastatic tumors and at inflammatory sites undergoing hypoxia or the Warburg effect. At these sites, extracellular lactate contributes to malignancy and immune response evasion. Intriguingly, at 30-40 mm, the reported Km of MCT4 for lactate is more than 1 order of magnitude higher than physiological or even pathological lactate levels. MCT4 is not thought to transport pyruvate. Here we have characterized cell lactate and pyruvate dynamics using the FRET sensors Laconic and Pyronic. Dominant MCT4 permeability was demonstrated in various cell types by pharmacological means and by CRISPR/Cas9-mediated deletion. Respective Km values for lactate uptake were 1.7, 1.2, and 0.7 mm in MDA-MB-231 cells, macrophages, and HEK293 cells expressing recombinant MCT4. In MDA-MB-231 cells MCT4 exhibited a Km for pyruvate of 4.2 mm, as opposed to >150 mm reported previously. Parallel assays with the pH-sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) indicated that previous Km estimates based on substrate-induced acidification were severely biased by confounding pH-regulatory mechanisms. Numerical simulation using revised kinetic parameters revealed that MCT4, but not the related transporters MCT1 and MCT2, endows cells with the ability to export lactate in high-lactate microenvironments. In conclusion, MCT4 is a high-affinity lactate transporter with physiologically relevant affinity for pyruvate.


Asunto(s)
Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Transporte Biológico/efectos de los fármacos , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Diclofenaco/farmacología , Fluoresceínas/química , Edición Génica , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Cinética , Macrófagos/citología , Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ácido Pirúvico/metabolismo
5.
J Neurosci Res ; 95(11): 2267-2274, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28150866

RESUMEN

Recent articles have drawn renewed attention to the housekeeping glucose transporter GLUT1 and its possible involvement in neurodegenerative diseases. Here we provide an updated analysis of brain glucose transport and the cellular mechanisms involved in its acute modulation during synaptic activity. We discuss how the architecture of the blood-brain barrier and the low concentration of glucose within neurons combine to make endothelial/glial GLUT1 the master controller of neuronal glucose utilization, while the regulatory role of the neuronal glucose transporter GLUT3 emerges as secondary. The near-critical condition of glucose dynamics in the brain suggests that subtle deficits in GLUT1 function or its activity-dependent control by neurons may contribute to neurodegeneration. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/patología , Metabolismo Energético/fisiología , Transportador de Glucosa de Tipo 1/deficiencia , Humanos , Enfermedades Neurodegenerativas/patología , Neuronas/patología
6.
Proc Natl Acad Sci U S A ; 112(35): 11090-5, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26286989

RESUMEN

Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.


Asunto(s)
Compuestos de Amonio/metabolismo , Astrocitos/metabolismo , Ácido Láctico/metabolismo , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Animales , Ratones
7.
J Neurosci ; 35(10): 4168-78, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25762664

RESUMEN

Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K(+) or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.


Asunto(s)
Astrocitos/efectos de los fármacos , Canales Iónicos/fisiología , Ácido Láctico/metabolismo , Potasio/farmacología , Animales , Animales Recién Nacidos , Bario/farmacología , Cadmio/farmacología , Células Cultivadas , Corteza Cerebral/citología , Femenino , Fluoresceínas/metabolismo , Glucógeno/metabolismo , Humanos , Técnicas In Vitro , Canales Iónicos/efectos de los fármacos , Iones/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ácido Pirúvico/farmacología , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Transfección
8.
PLoS One ; 9(1): e85780, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465702

RESUMEN

Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Mitocondrias/metabolismo , Imagen Molecular/métodos , Ácido Pirúvico/metabolismo , Análisis de la Célula Individual/métodos , Animales , Proteínas Bacterianas/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Citosol/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucólisis , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes/metabolismo , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Proteínas Represoras/metabolismo , Transcripción Genética
9.
Neurophotonics ; 1(1): 011004, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26157964

RESUMEN

Neurophotonics comes to light at a time in which advances in microscopy and improved calcium reporters are paving the way toward high-resolution functional mapping of the brain. This review relates to a parallel revolution in metabolism. We argue that metabolism needs to be approached both in vitro and in vivo, and that it does not just exist as a low-level platform but is also a relevant player in information processing. In recent years, genetically encoded fluorescent nanosensors have been introduced to measure glucose, glutamate, ATP, NADH, lactate, and pyruvate in mammalian cells. Reporting relative metabolite levels, absolute concentrations, and metabolic fluxes, these sensors are instrumental for the discovery of new molecular mechanisms. Sensors continue to be developed, which together with a continued improvement in protein expression strategies and new imaging technologies, herald an exciting era of high-resolution characterization of metabolism in the brain and other organs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA