Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(15): 14545-14554, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494826

RESUMEN

Coherent optical manipulation of electronic bandstructures via Floquet Engineering is a promising means to control quantum systems on an ultrafast time scale. However, the ultrafast switching on/off of the driving field comes with questions regarding the limits of the Floquet formalism (which is defined for an infinite periodic drive) through the switching process and to what extent the transient changes can be driven adiabatically. Experimentally addressing these questions has been difficult, in large part due to the absence of an established technique to measure coherent dynamics through the duration of the pulse. Here, using multidimensional coherent spectroscopy we explicitly excite, control, and probe a coherent superposition of excitons in the K and K' valleys in monolayer WS2. With a circularly polarized, red-detuned pump pulse, the degeneracy of the K and K' excitons can be lifted, and the phase of the coherence rotated. We directly measure phase rotations greater than π during the 100 fs driving pulse and show that this can be described by a combination of the AC-Stark shift of excitons in one valley and the Bloch-Siegert shift of excitons in the opposite valley. Despite showing a smooth evolution of the phase that directly follows the intensity envelope of the nonresonant pump pulse, the process is not perfectly adiabatic. By measuring the magnitude of the macroscopic coherence as it evolves before, during, and after the nonresonant pump pulse we show that there is additional decoherence caused by power broadening in the presence of the nonresonant pump. This nonadiabaticity arises as a result of interactions with the otherwise adiabatic Floquet states and may be a problem for many applications, such as manipulating qubits in quantum information processing; however, these measurements also suggest ways such effects can be minimized or eliminated.

2.
Nat Commun ; 13(1): 6164, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36257945

RESUMEN

Interactions between quasiparticles are of fundamental importance and ultimately determine the macroscopic properties of quantum matter. A famous example is the phenomenon of superconductivity, which arises from attractive electron-electron interactions that are mediated by phonons or even other more exotic fluctuations in the material. Here we introduce mobile exciton impurities into a two-dimensional electron gas and investigate the interactions between the resulting Fermi polaron quasiparticles. We employ multi-dimensional coherent spectroscopy on monolayer WS2, which provides an ideal platform for determining the nature of polaron-polaron interactions due to the underlying trion fine structure and the valley specific optical selection rules. At low electron doping densities, we find that the dominant interactions are between polaron states that are dressed by the same Fermi sea. In the absence of bound polaron pairs (bipolarons), we show using a minimal microscopic model that these interactions originate from a phase-space filling effect, where excitons compete for the same electrons. We furthermore reveal the existence of a bipolaron bound state with remarkably large binding energy, involving excitons in different valleys cooperatively bound to the same electron. Our work lays the foundation for probing and understanding strong electron correlation effects in two-dimensional layered structures such as moiré superlattices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...