Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 25(10): e202300821, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564329

RESUMEN

Bile acids are bioactive metabolites that are biotransformed into secondary bile acids by the gut microbiota, a vast consortium of microbes that inhabit the intestines. The first step in intestinal secondary bile acid metabolism is carried out by a critical enzyme, bile salt hydrolase (BSH), that catalyzes the gateway reaction that precedes all subsequent microbial metabolism of these important metabolites. As gut microbial metabolic activity is difficult to probe due to the complex nature of the gut microbiome, approaches are needed to profile gut microbiota-associated enzymes such as BSH. Here, we develop a panel of BSH activity-based probes (ABPs) to determine how changes in diurnal rhythmicity of gut microbiota-associated metabolism affects BSH activity and substrate preference. This panel of covalent probes enables determination of BSH activity and substrate specificity from multiple gut anerobic bacteria derived from the human and mouse gut microbiome. We found that both gut microbiota-associated BSH activity and substrate preference is rhythmic, likely due to feeding patterns of the mice. These results indicate that this ABP-based approach can be used to profile changes in BSH activity in physiological and disease states that are regulated by circadian rhythms.


Asunto(s)
Amidohidrolasas , Ácidos y Sales Biliares , Microbioma Gastrointestinal , Animales , Ratones , Humanos , Amidohidrolasas/metabolismo , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/química , Especificidad por Sustrato , Ratones Endogámicos C57BL , Bacterias/metabolismo , Bacterias/enzimología , Ritmo Circadiano , Sondas Moleculares/química , Sondas Moleculares/metabolismo
2.
J Am Chem Soc ; 144(40): 18212-18217, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36190998

RESUMEN

Strategies to visualize cellular membranes with light microscopy are restricted by the diffraction limit of light, which far exceeds the dimensions of lipid bilayers. Here, we describe a method for super-resolution imaging of metabolically labeled phospholipids within cellular membranes. Guided by the principles of expansion microscopy, we develop an all-small molecule approach that enables direct chemical anchoring of bioorthogonally labeled phospholipids into a hydrogel network and is capable of super-resolution imaging of cellular membranes. We apply this method, termed lipid expansion microscopy (LExM), to visualize organelle membranes with precision, including a unique class of membrane-bound structures known as nuclear invaginations. Compatible with standard confocal microscopes, LExM will be widely applicable for super-resolution imaging of phospholipids and cellular membranes in numerous physiological contexts.


Asunto(s)
Membrana Dobles de Lípidos , Fosfolípidos , Membrana Celular , Hidrogeles , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Fosfolípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA