Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 16(1): e13211, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37991154

RESUMEN

Reductions in soil moisture due to prolonged episodes of drought can potentially affect whole forest ecosystems, including soil microorganisms and their functions. We investigated how the composition of soil microbial communities is affected by prolonged episodes of water limitation. In a mesocosm experiment with Scots pine saplings and natural forest soil maintained at different levels of soil water content over 2 years, we assessed shifts in prokaryotic and fungal communities and related these to changes in plant development and soil properties. Prolonged water limitation induced progressive changes in soil microbial community composition. The dissimilarity between prokaryotic communities at different levels of water limitation increased over time regardless of the recurrent seasons, while fungal communities were less affected by prolonged water limitation. Under low soil water contents, desiccation-tolerant groups outcompeted less adapted, and the lifestyle of prokaryotic taxa shifted from copiotrophic to oligotrophic. While the abundance of saprotrophic and ligninolytic groups increased alongside an accumulation of dead plant material, the abundance of symbiotic and nutrient-cycling taxa decreased, likely impairing the development of the trees. Overall, prolonged episodes of drought appeared to continuously alter the structure of microbial communities, pointing to a potential loss of critical functions provided by the soil microbiome.


Asunto(s)
Microbiota , Suelo , Suelo/química , Microbiología del Suelo , Bosques , Árboles
2.
Front Microbiol ; 13: 994091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225364

RESUMEN

The larvae of the black soldier fly (BSFL, Hermetia illucens) efficiently close resource cycles. Next to the nutrient-rich insect biomass used as animal feed, the residues from the process are promising plant fertilizers. Besides a high nutrient content, the residues contain a diverse microbial community and application to soil can potentially promote soil fertility and agricultural production through the introduction of beneficial microbes. This research assessed the application of the residues on plant-associated bacterial and fungal communities in the rhizosphere of a grass-clover mix in a 42-day greenhouse pot study. Potted soil was amended with BSFL residues (BR+) or conventional compost (CC+) produced by Rwandan waste management companies in parallel to residues and compost sterilized (BR-, CC-) by high-energy electron beam (HEEB) as abiotic controls. The fertilizers were applied at a rate of 150 kg N ha-1. Soil bacterial and fungal communities in both fertilizer and soil were assessed by high-throughput sequencing of ribosomal markers at different times after fertilizer application. Additionally, indicators for soil fertility such as basal respiration, plant yield and soil physicochemical properties were analyzed. Results showed that the application of BSFL residues influenced the soil microbial communities, and especially fungi, stronger than CC fertilizers. These effects on the microbial community structure could partly be attributed to a potential introduction of microbes to the soil by BSFL residues (e.g., members of genus Bacillus) since untreated and sterilized BSFL residues promoted different microbial communities. With respect to the abiotic effects, we emphasize a potential driving role of particular classes of organic matter like fiber and chitin. Indeed, especially taxa associated with decomposition of organic matter (e.g., members of the fungal genus Mortierella) were promoted by the application of BSFL residues. Soil fertility with respect to plant yield (+17% increase compared to unamended control) and basal respiration (+16% increase compared to unamended control) tended to be improved with the addition of BSFL residues. Findings underline the versatile opportunities for soil fertility arising from the application of BSFL residues in plant production and point to further research on quantification of the described effects.

3.
J Environ Manage ; 214: 36-44, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29518594

RESUMEN

Increases in agricultural productivity associated to the crescent use of finite reserves of phosphorus improved the demand for ways to recycle and reuse this nutrient. Biochars, after doping processes, seem to be an alternative to mitigate the large use of P reserves. Sugarcane straw and poultry manure were submerged in an MgCl2 solution in a 1:10 solid/liquid ratio and subsequently pyrolyzed at 350 and 650 °C producing biochar. Increasing concentrations of P were agitated with biochars in order to obtain the maximum adsorption capacity of P with the aid of Langmuir and Freudelich isotherm. MPAC was extracted, successively, with H2SO4 (0.5 mol L-1), NaHCO3 (0.5 mol l-1 a pH 8.5) and H2O, until no P was detected in the solution. Biochars without the addition of Mg did not have the ability to adsorb P but had this property developed after the doping process. The poultry manure biochar presented higher MPAC (250.8 and 163.6 mg g-1 of P at 350 and 650 °C, respectively) than that of sugarcane straw (17.7 and 17.6 mg g-1 of P at 350 and 650 °C, respectively). The pyrolysis temperature changed significantly the MPAC values for the poultry manure biochar, with an increase in the adsorbed P binding energy for both biochars. H2SO4 showed the best extraction power, desorbing, with a lower number of extractions, the greater amount of the adsorbed P. These materials doped with Mg and subjected to pyrolysis have characteristics that allow their use in P adsorption from eutrophic and wastewaters and therefore its use as a slow release phosphate fertilizer, indicating to be competitive in quality and quantity with available soluble chemical sources in the market.


Asunto(s)
Carbón Orgánico , Estiércol , Aves de Corral , Adsorción , Animales , Cloruro de Magnesio , Fósforo , Saccharum
4.
Sci Total Environ ; 598: 1169-1176, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28505879

RESUMEN

The potential of biochar to prevent nitrogen (N) losses and improve plant performance were studied across various levels of N input for two growing seasons in mesocosms simulating an organic lettuce production system. A silt loam soil was amended with pine chip (PC) and walnut shell (WS) biochar (10tha-1) in combination with five organic N fertilization rates (0, 56, 112, 168, and 225kgNha-1). The N output through harvest, leachate, and N2O emissions were measured to assess N utilization and environmental losses of biochar-amended soils. For both biochars, only at the 100% N fertilization rate was lettuce biomass production improved with significant increases in N use efficiency (NUE); however, only PC biochar decreased N losses via leaching (at 100% N fertilization rate) and seasonal N2O emissions (at 50% N fertilization rate). Thus, due to increases in plant biomass and decreases in N losses, PC biochar significantly decreased the ratio of N lost over N exported in biomass. Findings from this study suggest that both WS and PC biochars can improve organic lettuce production but only at 225kgNha-1. Decreases in N losses via leachate and N2O emissions vary with fertilization level and biochar type.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA