Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 21(5): 638-645, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29527800

RESUMEN

Limited dispersal is commonly used to explain differences in diversification rates. An obvious but unexplored factor affecting dispersal is the mode of locomotion used by animals. Whether individuals walk, swim or fly can dictate the type and severity of geographical barriers to dispersal, and determine the general range over which genetic differentiation might occur. We collated information on locomotion mode and genetic differentiation (FST ) among vertebrate populations from over 400 published articles. Our results showed that vertebrate species that walk tend to have higher genetic differentiation among populations than species that swim or fly. Within species that swim, vertebrates in freshwater systems have higher genetic differentiation than those in marine systems, which is consistent with the higher number of species in freshwater environments. These results show that locomotion mode can impact gene flow among populations, supporting at a broad-scale what has previously been proposed at smaller taxonomical scales.


Asunto(s)
Flujo Genético , Filogenia , Vertebrados , Animales , Flujo Génico , Variación Genética , Natación , Vertebrados/genética
2.
Evolution ; 70(8): 1747-59, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27272014

RESUMEN

We know little about on how frequently transitions into new habitats occur, especially the colonization of novel environments that are the most likely to instigate adaptive evolution. One of the most extreme ecological transitions has been the shift in habitat associated with the move from water to land by amphibious fish. We provide the first phylogenetic investigation of these transitions for living fish. Thirty-three families have species reported to be amphibious and these are likely independent evolutionary origins of fish emerging onto land. Phylogenetic reconstructions of closely related taxa within one of these families, the Blenniidae, inferred as many as seven convergences on a highly amphibious lifestyle. Taken together, there appear to be few constraints on fish emerging onto land given amphibious behavior has evolved repeatedly many times across ecologically diverse families. The colonization of novel habitats by other taxa resulting in less dramatic changes in environment should be equally, if not, more frequent in nature, providing an important prerequisite for subsequent adaptive differentiation.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Ambiente , Peces/fisiología , Rasgos de la Historia de Vida , Animales , Ecosistema , Perciformes , Filogenia
3.
PLoS One ; 11(5): e0150991, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27195493

RESUMEN

Quantifying the spatial scale of population connectivity is important for understanding the evolutionary potential of ecologically divergent populations and for designing conservation strategies to preserve those populations. For marine organisms like fish, the spatial scale of connectivity is generally set by a pelagic larval phase. This has complicated past estimates of connectivity because detailed information on larval movements are difficult to obtain. Genetic approaches provide a tractable alternative and have the added benefit of estimating directly the reproductive isolation of populations. In this study, we leveraged empirical estimates of genetic differentiation among populations with simulations and a meta-analysis to provide a general estimate of the spatial scale of genetic connectivity in marine environments. We used neutral genetic markers to first quantify the genetic differentiation of ecologically-isolated adult populations of a land dwelling fish, the Pacific leaping blenny (Alticus arnoldorum), where marine larval dispersal is the only probable means of connectivity among populations. We then compared these estimates to simulations of a range of marine dispersal scenarios and to collated FST and distance data from the literature for marine fish across diverse spatial scales. We found genetic connectivity at sea was extensive among marine populations and in the case of A. arnoldorum, apparently little affected by the presence of ecological barriers. We estimated that ~5000 km (with broad confidence intervals ranging from 810-11,692 km) was the spatial scale at which evolutionarily meaningful barriers to gene flow start to occur at sea, although substantially shorter distances are also possible for some taxa. In general, however, such a large estimate of connectivity has important implications for the evolutionary and conservation potential of many marine fish communities.


Asunto(s)
Peces/genética , Animales , Femenino , Genética de Población , Masculino
4.
PLoS One ; 9(10): e62079, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333281

RESUMEN

This study characterizes the highly variable He185/333 genes, transcripts and proteins in coelomocytes of the sea urchin, Heliocidaris erythrogramma. Originally discovered in the purple sea urchin, Strongylocentrotus purpuratus, the products of this gene family participate in the anti-pathogen defenses of the host animals. Full-length He185/333 genes and transcripts are identified. Complete open reading frames of He185/333 homologues are analyzed as to their element structure, single nucleotide polymorphisms, indels and sequence repeats and are subjected to diversification analyses. The sequence elements that compose He185/333 are different to those identified for Sp185/333. Differences between Sp185/333 and He185/333 genes are also evident in the complexity of the sequences of the introns. He185/333 proteins show a diverse range of molecular weights on Western blots. The observed sizes and pIs of the proteins differ from predicted values, suggesting post-translational modifications and oligomerization. Immunofluorescence microscopy shows that He185/333 proteins are mainly located on the surface of coelomocyte subpopulations. Our data demonstrate that He185/333 bears the same substantial characteristics as their S. purpuratus homologues. However, we also identify several unique characteristics of He185/333 (such as novel element patterns, sequence repeats, distribution of positively-selected codons and introns), suggesting species-specific adaptations. All sequences in this publication have been submitted to Genbank (accession numbers JQ780171-JQ780321) and are listed in table S1.


Asunto(s)
Genes MHC Clase II , Familia de Multigenes , Erizos de Mar/genética , Animales , Secuencia de Bases , Variación Genética , Intrones/genética , Erizos de Mar/inmunología , Alineación de Secuencia , Especificidad de la Especie
5.
BMC Evol Biol ; 14: 97, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24884492

RESUMEN

BACKGROUND: Divergence between populations in reproductively important features is often vital for speciation. Many studies attempt to identify the cause of population differentiation in phenotype through the study of a specific selection pressure. Holistic studies that consider the interaction of several contrasting forms of selection are more rare. Most studies also fail to consider the history of connectivity among populations and the potential for genetic drift or gene flow to facilitate or limit phenotypic divergence. We examined the interacting effects of natural selection, sexual selection and the history of connectivity on phenotypic differentiation among five populations of the Pacific leaping blenny (Alticus arnoldorum), a land fish endemic to the island of Guam. RESULTS: We found key differences among populations in two male ornaments--the size of a prominent head crest and conspicuousness of a coloured dorsal fin--that reflected a trade-off between the intensity of sexual selection (male biased sex ratios) and natural selection (exposure to predators). This differentiation in ornamentation has occurred despite evidence suggesting extensive gene flow among populations, which implies that the change in ornament expression has been recent (and potentially plastic). CONCLUSIONS: Our study provides an early snapshot of divergence in reproductively important features that, regardless of whether it reflects genetic or plastic changes in phenotype, could ultimately form a reproductive barrier among populations.


Asunto(s)
Peces/clasificación , Peces/genética , Flujo Génico , Especiación Genética , Animales , Tamaño Corporal , Femenino , Peces/fisiología , Masculino , Reproducción , Selección Genética , Caracteres Sexuales
6.
Evolution ; 68(7): 1947-60, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24641091

RESUMEN

Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection.


Asunto(s)
Especiación Genética , Gymnotiformes/genética , Ríos , Animales , ADN Mitocondrial/genética , Genoma , Polimorfismo Genético , Selección Genética
7.
Front Genet ; 5: 477, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25653668

RESUMEN

Evolution creates and sustains biodiversity via adaptive changes in ecologically relevant traits. Ecologically mediated selection contributes to genetic divergence both in the presence or absence of geographic isolation between populations, and is considered an important driver of speciation. Indeed, the genetics of ecological speciation is becoming increasingly studied across a variety of taxa and environments. In this paper we review the literature of ecological speciation in the tropics. We report on low research productivity in tropical ecosystems and discuss reasons accounting for the rarity of studies. We argue for research programs that simultaneously address biogeographical and taxonomic questions in the tropics, while effectively assessing relationships between reproductive isolation and ecological divergence. To contribute toward this goal, we propose a new framework for ecological speciation that integrates information from phylogenetics, phylogeography, population genomics, and simulations in evolutionary landscape genetics (ELG). We introduce components of the framework, describe ELG simulations (a largely unexplored approach in ecological speciation), and discuss design and experimental feasibility within the context of tropical research. We then use published genetic datasets from populations of five codistributed Amazonian fish species to assess the performance of the framework in studies of tropical speciation. We suggest that these approaches can assist in distinguishing the relative contribution of natural selection from biogeographic history in the origin of biodiversity, even in complex ecosystems such as Amazonia. We also discuss on how to assess ecological speciation using ELG simulations that include selection. These integrative frameworks have considerable potential to enhance conservation management in biodiversity rich ecosystems and to complement historical biogeographic and evolutionary studies of tropical biotas.

8.
PLoS One ; 7(11): e48800, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144977

RESUMEN

Accurately quantifying biodiversity is fundamental for both evolutionary theory and conservation strategies. DNA-based studies are exposing high cryptic diversity irrespective of taxonomic group or environmental setting, and increasing the ever-growing estimates of global biodiversity. This has severe implications for under-sampled and species-rich tropical regions, such as the Amazon Basin. We used biogeographic predictions derived from geomorphological history and contemporary hydrochemical and genetic data to examine cryptic diversity in the Amazonian driftwood catfish Centromochlus existimatus. Using both nuclear and mitochondrial DNA markers, five deeply divergent cryptic lineages are reported, for which at least three are sympatric in distribution. These lineages appear relatively old, with divergence times dating back to middle Miocene. Diversification events appear to be chronologically associated with the formation of the modern Amazon River system, and perhaps influenced by hydrochemical gradients between tributaries. The cause of apparent morphological stasis in the C. existimatus species complex is speculated within the context of hydrochemistry and non-visual mating cues and a full taxonomic revision is recommended. Our findings suggest that the diversity of Amazonian ichthyofauna is vastly underestimated and highlight the relevance of biogeographic predictions to guide sampling efforts in ecologically complex and under-studied ecosystems.


Asunto(s)
Biodiversidad , Bagres/clasificación , Animales , Teorema de Bayes , Bagres/genética , ADN Mitocondrial/química , Haplotipos , Filogeografía , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
9.
J Hered ; 103(6): 882-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23125406

RESUMEN

Using next-generation sequencing technology, we describe the complete mitochondrial genomes for 5 Australian passerine birds (Epthianura albifrons, Petroica phoenicea, Petroica goodenovii, Petroica boodang, and Eopsaltria australis). We successfully assemble each mitogenome de novo using just 1/8th of a Roche GL FSX 454 pyrosequencing plate. From the assembled mitogenomes, we identify 2 different mitochondrial gene arrangements in the region spanning 5'-3' from Cytochrome B to 12s RNA. These gene arrangements represent 2 of the 4 known avian mitochondrial gene arrangements. Our results, together with other previously described avian mitogenomes, highlight that certain mitochondrial rearrangements appear to have arisen multiple times.


Asunto(s)
Orden Génico , Genoma Mitocondrial , Pájaros Cantores/genética , Adenosina Trifosfatasas/genética , Animales , Citocromos b/genética , Datos de Secuencia Molecular , ARN Ribosómico , ARN Ribosómico 16S , ARN de Transferencia , Análisis de Secuencia de ADN/métodos
10.
Mol Ecol ; 21(10): 2410-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22512735

RESUMEN

The unparalleled diversity of tropical ecosystems like the Amazon Basin has been traditionally explained using spatial models within the context of climatic and geological history. Yet, it is adaptive genetic diversity that defines how species evolve and interact within an ecosystem. Here, we combine genome scans, population genetics and sequence-based phylogeographic analyses to examine spatial and ecological arrangements of selected and neutrally evolving regions of the genome of an Amazonian fish, Triportheus albus. Using a sampling design encompassing five major Amazonian rivers, three hydrochemical settings, 352 nuclear markers and two mitochondrial DNA genes, we assess the influence of environmental gradients as biodiversity drivers in Amazonia. We identify strong divergent natural selection with gene flow and isolation by environment across craton (black and clear colour)- and Andean (white colour)-derived water types. Furthermore, we find that heightened selection and population genetic structure present at the interface of these water types appears more powerful in generating diversity than the spatial arrangement of river systems and vicariant biogeographic history. The results from our study challenge assumptions about the origin and distribution of adaptive and neutral genetic diversity in tropical ecosystems. In addition, they have important implications for measures of biodiversity and evolutionary potential in one of the world's most diverse and iconic ecosystems.


Asunto(s)
Characidae/genética , Flujo Génico , Genética de Población , Filogeografía , Selección Genética , Animales , Brasil , Núcleo Celular/genética , ADN Mitocondrial/genética , Ecosistema , Datos de Secuencia Molecular , Ríos
11.
BMC Evol Biol ; 11: 176, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21693014

RESUMEN

BACKGROUND: Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt Pyura stolonifera, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit. RESULTS: Extensive sampling in Africa, Australasia and South America revealed the existence of "nested" levels of cryptic diversity, in which at least five distinct species can be further subdivided into smaller-scale genetic lineages. The ranges of several evolutionary units are limited by well-documented biogeographic disjunctions. Evidence for both cryptic native diversity and the existence of invasive populations allows us to considerably refine our view of the native versus introduced status of the evolutionary units within Pyura stolonifera in the different coastal communities they dominate. CONCLUSIONS: This study illustrates the degree of taxonomic complexity that can exist within widespread species for which there is little taxonomic expertise, and it highlights the challenges involved in distinguishing between indigenous and introduced populations. The fact that multiple genetic lineages can be native to a single geographic region indicates that it is imperative to obtain samples from as many different habitat types and biotic zones as possible when attempting to identify the source region of a putative invader. "Nested" cryptic diversity, and the difficulties in correctly identifying invasive species that arise from it, represent a major challenge for managing biodiversity.


Asunto(s)
Biodiversidad , Ecosistema , Especies Introducidas , Biología Marina , Urocordados/clasificación , Animales , Evolución Biológica , Datos de Secuencia Molecular , Filogenia , Urocordados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA