Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(5)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37242475

RESUMEN

The radionuclide therapy [177Lu]Lu-PSMA-617 was recently FDA-approved for treatment of metastatic castration-resistant prostate cancer. Salivary gland toxicity is currently considered as the main dose-limiting side effect. However, its uptake and retention mechanisms in the salivary glands remain elusive. Therefore, our aim was to elucidate the uptake patterns of [177Lu]Lu-PSMA-617 in salivary gland tissue and cells by conducting cellular binding and autoradiography experiments. Briefly, A-253 and PC3-PIP cells, and mouse kidney and pig salivary gland tissue, were incubated with 5 nM [177Lu]Lu-PSMA-617 to characterize its binding. Additionally, [177Lu]Lu-PSMA-617 was co-incubated with monosodium glutamate, ionotropic or metabotropic glutamate receptor antagonists. Low, non-specific binding was observed in salivary gland cells and tissues. Monosodium glutamate was able to decrease [177Lu]Lu-PSMA-617 in PC3-PIP cells, mouse kidney and pig salivary gland tissue. Kynurenic acid (ionotropic antagonist) decreased the binding of [177Lu]Lu-PSMA-617 to 29.2 ± 20.6% and 63.4 ± 15.4%, respectively, with similar effects observed on tissues. (RS)-MCPG (metabotropic antagonist) was able to decrease the [177Lu]Lu-PSMA-617 binding on A-253 cells to 68.2 ± 16.8% and pig salivary gland tissue to 53.1 ± 36.8%. To conclude, we showed that the non-specific binding on [177Lu]Lu-PSMA-617 could be reduced by monosodium glutamate, kynurenic acid and (RS)-MCPG.

2.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36978820

RESUMEN

Pelvic irradiation-induced mucositis secondarily leads to dysbiosis, which seriously affects patients' quality of life after treatment. No safe and effective radioprotector or mitigator has yet been approved for clinical therapy. Here, we investigated the potential protective effects of fresh biomass of Limnospira indica PCC 8005 against ionizing irradiation-induced mucositis and dysbiosis in respect to benchmark probiotic Lacticaseibacillus rhamnosus GG ATCC 53103. For this, mice were supplemented daily before and after 12 Gy X-irradiation of the pelvis. Upon sacrifice, food supplements' efficacy was assessed for intestinal barrier protection, immunomodulation and changes in the microbiota composition. While both could not confer barrier protection or significant immunomodulatory effects, 16S microbial profiling revealed that L. indica PCC 8005 and L. rhamnosus GG could prevent pelvic irradiation-induced dysbiosis. Altogether, our data show that-besides benchmarked L. rhamnosus GG-L. indica PCC 8005 is an interesting candidate to further explore as a radiomitigator counteracting pelvic irradiation-induced dysbiosis in the presented in vivo irradiation-gut-microbiota platform.

3.
Pharmaceutics ; 14(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36559060

RESUMEN

Samarium-153 is a promising theranostic radionuclide, but low molar activities (Am) resulting from its current production route render it unsuitable for targeted radionuclide therapy (TRNT). Recent efforts combining neutron activation of 152Sm in the SCK CEN BR2 reactor with mass separation at CERN/MEDICIS yielded high-Am 153Sm. In this proof-of-concept study, we further evaluated the potential of high-Am 153Sm for TRNT by radiolabeling to DOTA-TATE, a well-established carrier molecule binding the somatostatin receptor 2 (SSTR2) that is highly expressed in gastroenteropancreatic neuroendocrine tumors. DOTA-TATE was labeled with 153Sm and remained stable up to 7 days in relevant media. The binding specificity and high internalization rate were validated on SSTR2-expressing CA20948 cells. In vitro biological evaluation showed that [153Sm]Sm-DOTA-TATE was able to reduce CA20948 cell viability and clonogenic potential in an activity-dependent manner. Biodistribution studies in healthy and CA20948 xenografted mice revealed that [153Sm]Sm-DOTA-TATE was rapidly cleared and profound tumor uptake and retention was observed whilst these were limited in normal tissues. This proof-of-concept study showed the potential of mass-separated 153Sm for TRNT and could open doors towards wider applications of mass separation in medical isotope production.

4.
Mol Oncol ; 16(19): 3410-3435, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35579852

RESUMEN

Radiotherapy is the standard of care for breast cancer. However, surviving radioresistant cells can repopulate following treatment and provoke relapse. Better understanding of the molecular mechanisms of radiation resistance may help to improve treatment of radioresistant tumours. To emulate radiation therapy at the cellular level, we exposed MCF7 breast cancer cells to daily radiation doses of 2 Gy up to an accumulated dose of 20 Gy. Fractionally irradiated cells (FIR20) displayed increased clonogenic survival and population doubling time as compared with age-matched sham-irradiated cells and untreated parental MCF7 cells. RNA-sequencing revealed a core signature of 229 mRNAs and 7 circular RNAs of which the expression was significantly altered in FIR20 cells. Dysregulation of several top genes was mirrored at the protein level. The FIR20 cell transcriptome overlapped significantly with canonical radiation response signatures and demonstrated a remarkable commonality with radiation and endocrine therapy resistance expression profiles, suggesting crosstalk between both acquired resistance pathways, as indicated by reduced sensitivity to tamoxifen cytotoxicity of FIR20 cells. Using predictive analyses and functional enrichment, we identified a gene-regulatory network that promotes stemness and inflammatory signalling in FIR20 cells. We propose that these phenotypic traits render breast cancer cells more radioresistant but may at the same time serve as potential targets for combination therapies.


Asunto(s)
Neoplasias de la Mama , Tolerancia a Radiación , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Fenotipo , ARN Circular , Tolerancia a Radiación/genética , Tamoxifeno/farmacología
5.
Aging (Albany NY) ; 12(20): 20817-20834, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082299

RESUMEN

Epigenetic clocks are based on age-associated changes in DNA methylation of CpG-sites, which can accurately measure chronological age in different species. Recently, several studies have indicated that the difference between chronological and epigenetic age, defined as the age acceleration, could reflect biological age indicating functional decline and age-associated diseases. In humans, an epigenetic clock associated Alzheimer's disease (AD) pathology with an acceleration of the epigenetic age. In this study, we developed and validated two mouse brain region-specific epigenetic clocks from the C57BL/6J hippocampus and cerebral cortex. Both clocks, which could successfully estimate chronological age, were further validated in a widely used mouse model for AD, the triple transgenic AD (3xTg-AD) mouse. We observed an epigenetic age acceleration indicating an increased biological age for the 3xTg-AD mice compared to non-pathological C57BL/6J mice, which was more pronounced in the cortex as compared to the hippocampus. Genomic region enrichment analysis revealed that age-dependent CpGs were enriched in genes related to developmental, aging-related, neuronal and neurodegenerative functions. Due to the limited access of human brain tissues, these epigenetic clocks specific for mouse cortex and hippocampus might be important in further unravelling the role of epigenetic mechanisms underlying AD pathology or brain aging in general.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Relojes Biológicos/genética , Corteza Cerebral/metabolismo , Epigénesis Genética , Hipocampo/metabolismo , Animales , Metilación de ADN , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Reprod Toxicol ; 91: 59-73, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31705956

RESUMEN

Recent studies highlighted a link between ionizing radiation exposure during neurulation and birth defects such as microphthalmos and anophthalmos. Because the mechanisms underlying these defects remain largely unexplored, we irradiated pregnant C57BL/6J mice (1.0 Gy, X-rays) at embryonic day (E)7.5, followed by histological and gene/protein expression analyses at defined days. Irradiation impaired embryonic development at E9 and we observed a delayed pigmentation of the retinal pigment epithelium (RPE) at E11. In addition, a reduced RNA expression and protein abundance of critical eye-development genes (e.g. Pax6 and Lhx2) was observed. Furthermore, a decreased expression of Mitf, Tyr and Tyrp1 supported the radiation-induced perturbation in RPE pigmentation. Finally, via immunostainings for proliferation (Ki67) and mitosis (phosphorylated histone 3), a decreased mitotic index was observed in the E18 retina after exposure at E7.5. Overall, we propose a plausible etiological model for radiation-induced eye-size defects, with RPE melanogenesis as a major determining factor.


Asunto(s)
Melaninas/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Epitelio Pigmentado de la Retina/efectos de la radiación , Rayos X/efectos adversos , Animales , Desarrollo Embrionario/efectos de la radiación , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de la radiación , Traumatismos Experimentales por Radiación/genética , Epitelio Pigmentado de la Retina/anomalías , Epitelio Pigmentado de la Retina/metabolismo
7.
Cells ; 8(8)2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357500

RESUMEN

The exposure of mouse embryos in utero and primary cortical neurons to ionizing radiation results in the P53-dependent activation of a subset of genes that is highly induced during brain development and neuronal maturation, a feature that these genes reportedly share with circular RNAs (circRNAs). Interestingly, some of these genes are predicted to express circular transcripts. In this study, we validated the abundance of the circular transcript variants of four P53 target genes (Pvt1, Ano3, Sec14l5, and Rnf169). These circular variants were overall more stable than their linear counterparts. They were furthermore highly enriched in the brain and their transcript levels continuously increase during subsequent developmental stages (from embryonic day 12 until adulthood), while no further increase could be observed for linear mRNAs beyond post-natal day 30. Finally, whereas radiation-induced expression of P53 target mRNAs peaks early after exposure, several of the circRNAs showed prolonged induction in irradiated embryonic mouse brain, primary mouse cortical neurons, and mouse blood. Together, our results indicate that the circRNAs from these P53 target genes are induced in response to radiation and they corroborate the findings that circRNAs may represent biomarkers of brain age. We also propose that they may be superior to mRNA as long-term biomarkers for radiation exposure.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Neuronas/metabolismo , Neuronas/efectos de la radiación , ARN Circular , Radiación Ionizante , Empalme Alternativo , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Masculino , Neuronas/citología , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...