Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Int J Antimicrob Agents ; 63(5): 107144, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38494147

RESUMEN

OBJECTIVES: Daptomycin is one of the few last-line antimicrobials available for the treatment of multidrug-resistant Staphylococcus aureus infections. An increasing number of daptomycin non-susceptible S. aureus infections has been reported worldwide, including Australia. Resistance to daptomycin is multifactorial and involves chromosomal mutations in genes encoding proteins involved in cell membrane and cell wall synthesis. METHODS: In this study, we performed broth microdilution (BMD) to determine the daptomycin minimum inhibitory concentration (MIC) of 66 clinical isolates of S. aureus previously reported as daptomycin non-susceptible by the VITEKⓇ 2. We used whole-genome sequencing to characterise the isolates and screened the genomes for mutations associated with daptomycin non-susceptibility. RESULTS: Only 56 of the 66 isolates had a daptomycin MIC >1 mg/L by BMD. Although the 66 isolates were polyclonal, ST22 was the predominant sequence type and one-third of the isolates were multidrug resistant. Daptomycin non-susceptibility was primarily associated with MprF mutations-at least one MprF mutation was identified in the 66 isolates. Twelve previously reported MprF mutations associated with daptomycin non-susceptibility were identified in 83% of the isolates. Novel MprF mutations identified included P314A, P314F, P314T, S337T, L341V, F349del, and T423R. CONCLUSIONS: Daptomycin non-susceptible S. aureus causing infections in Australia are polyclonal and harbour MprF mutation(s). The identification of multidrug-resistant daptomycin non-susceptible S. aureus is a public health concern.


Asunto(s)
Aminoaciltransferasas , Antibacterianos , Proteínas Bacterianas , Daptomicina , Pruebas de Sensibilidad Microbiana , Mutación , Infecciones Estafilocócicas , Staphylococcus aureus , Secuenciación Completa del Genoma , Daptomicina/farmacología , Humanos , Antibacterianos/farmacología , Australia , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Proteínas Bacterianas/genética , Aminoaciltransferasas/genética , Masculino , Farmacorresistencia Bacteriana Múltiple/genética , Femenino , Genoma Bacteriano/genética , Persona de Mediana Edad , Anciano , Adulto
2.
Commun Biol ; 7(1): 349, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514781

RESUMEN

The past decade has seen an increase in the prevalence of sequence type (ST) 45 methicillin-resistant Staphylococcus aureus (MRSA), yet the underlying drivers for its emergence and spread remain unclear. To better understand the worldwide dissemination of ST45 S. aureus, we performed phylogenetic analyses of Australian isolates, supplemented with a global population of ST45 S. aureus genomes. Our analyses revealed a distinct lineage of multidrug-resistant ST45 MRSA harbouring qacA, predominantly found in Australia and Singapore. Bayesian inference predicted that the acquisition of qacA occurred in the late 1990s. qacA was integrated into a structurally variable region of the chromosome containing Tn552 (carrying blaZ) and Tn4001 (carrying aac(6')-aph(2")) transposable elements. Using mutagenesis and in vitro assays, we provide phenotypic evidence that qacA confers tolerance to chlorhexidine. These findings collectively suggest both antimicrobial resistance and the carriage of qacA may play a role in the successful establishment of ST45 MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus/genética , Teorema de Bayes , Filogenia , Infecciones Estafilocócicas/epidemiología , Proteínas de Transporte de Membrana/genética , Proteínas Bacterianas/genética , Australia
3.
Clin Microbiol Rev ; : e0012123, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466110

RESUMEN

SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.

6.
Microb Genom ; 9(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38117559

RESUMEN

In 2010 a single isolate of a trimethoprim-resistant multilocus sequence type 5, Panton-Valentine leucocidin-positive, community-associated methicillin-resistant Staphylococcus aureus (PVL-positive ST5 CA-MRSA), colloquially named WA121, was identified in northern Western Australia (WA). WA121 now accounts for ~14 % of all WA MRSA infections. To gain an understanding of the genetic composition and phylogenomic structure of WA121 isolates we sequenced the genomes of 155 WA121 isolates collected 2010-2021 and present a detailed genomic description. WA121 was revealed to be a single clonally expanding lineage clearly distinct from sequenced ST5 strains reported outside Australia. WA121 strains were typified by the presence of the distinct PVL phage φSa2wa-st5, the recently described methicillin resistance element SCCmecIVo carrying the trimethoprim resistance (dfrG) transposon Tn4791, the novel ß-lactamase transposon Tn7702 and the epidermal cell differentiation inhibitor (EDIN-A) plasmid p2010-15611-2. We present evidence that SCCmecIVo together with Tn4791 has horizontally transferred to Staphylococcus argenteus and evidence of intragenomic movement of both Tn4791 and Tn7702. We experimentally demonstrate that p2010-15611-2 is capable of horizontal transfer by conjugative mobilization from one of several WA121 isolates also harbouring a pWBG749-like conjugative plasmid. In summary, WA121 is a distinct and clonally expanding Australian PVL-positive CA-MRSA lineage that is increasingly responsible for infections in indigenous communities in northern and western Australia. WA121 harbours a unique complement of mobile genetic elements and is capable of transferring antimicrobial resistance and virulence determinants to other staphylococci.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Australia , Leucocidinas/genética , Genómica , Australia Occidental
7.
Artículo en Inglés | MEDLINE | ID: mdl-37968066

RESUMEN

From 1 January to 31 December 2022, fifty-five institutions across Australia participated in the Australian Staphylococcus aureus Surveillance Outcome Program (ASSOP). The aim of ASSOP 2022 was to determine the proportion of Staphylococcus aureus bacteraemia (SAB) isolates in Australia that were antimicrobial resistant, with particular emphasis on susceptibility to methicillin and on characterisation of the molecular epidemiology of the methicillin-resistant isolates. A total of 3,214 SAB episodes were reported, of which 77.5% were community-onset. Overall, 15.0% of S. aureus were methicillin resistant. The 30-day all-cause mortality associated with methicillin-resistant SAB was 21.4%, which was significantly different to the 16.8% all-cause mortality associated with methicillin-susceptible SAB (p = 0.02). With the exception of the ß-lactams and erythromycin, antimicrobial resistance in methicillin-susceptible S. aureus was rare. However, in addition to the ß-lactams, approximately 31% of methicillin-resistant S. aureus (MRSA) were resistant to ciprofloxacin; 30% to erythromycin; 13% to tetracycline; 11% to gentamicin; and 2% to co-trimoxazole. One MRSA isolate, with a daptomycin MIC of 1.5 mg/L, harboured the A302V mprF and A23V cls2 mutations. When applying the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, teicoplanin resistance was detected in one MRSA isolate. Resistance to vancomycin or linezolid was not detected. Resistance to non-ß-lactam antimicrobials was largely attributable to the healthcare-associated MRSA (HA-MRSA) clone ST22-IV [2B] (EMRSA-15), and to the community-associated MRSA (CA-MRSA) clone ST45-V [5C2&5] which has acquired resistance to multiple antimicrobials including ciprofloxacin, clindamycin, erythromycin, gentamicin, and tetracycline. The ST22-IV [2B] (EMRSA-15) clone is the predominant HA-MRSA clone in Australia. Nonetheless, 86% of methicillin-resistant SAB episodes were due to CA-MRSA clones. Although polyclonal, approximately 72% of CA-MRSA clones were characterised as ST93-IV [2B] (Queensland clone); ST5-IV [2B]; ST45-V [5C2&5]; ST1-IV [2B]; ST30-IV [2B]; ST97-IV [2B]; ST953-IV [2B]; and ST8-IV [2B]. As CA-MRSA is well established in the Australian community, it is important to monitor antimicrobial resistance patterns in community- and healthcare-associated SAB as this information will guide therapeutic practices in treating S. aureus bacteraemia.


Asunto(s)
Antiinfecciosos , Bacteriemia , Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/epidemiología , Agar/uso terapéutico , Infección Hospitalaria/epidemiología , Infección Hospitalaria/tratamiento farmacológico , Meticilina/uso terapéutico , Australia/epidemiología , Farmacorresistencia Bacteriana , Eritromicina/uso terapéutico , Ciprofloxacina/uso terapéutico , Gentamicinas/uso terapéutico , Tetraciclina/uso terapéutico
8.
Artículo en Inglés | MEDLINE | ID: mdl-37968067

RESUMEN

The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric gram-negative pathogens. The 2022 survey was the tenth year to focus on blood stream infections caused by Enterobacterales, and the eighth year where Pseudomonas aeruginosa and Acinetobacter species were included. Fifty-five hospitals Australia-wide participated in 2022. The 2022 survey tested 9,739 isolates, comprising Enterobacterales (8,773; 90.1%), P. aeruginosa (840; 8.6%) and Acinetobacter species (126; 1.3%), using commercial automated methods. The results were analysed using Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (January 2023). Key resistances included resistance to the third-generation cephalosporin ceftriaxone in 12.7%/12.7% (CLSI/EUCAST criteria) of Escherichia coli and in 6.6%/6.6% of Klebsiella pneumoniae complex. Resistance rates to ciprofloxacin were 13.7%/13.7% for E. coli; 7.8%/7.8% for K. pneumoniae complex; 5.3%/5.3% for Enterobacter cloacae complex; and 4.3%/10.0% for P. aeruginosa. Resistance rates to piperacillin-tazobactam were 2.8%/5.9%; 2.9%/8.7%; 18.3%/27.2%; and 6.1%/14.7% for the same four species, respectively. Twenty-nine Enterobacterales isolates from 28 patients were shown to harbour a carbapenemase gene: 18 blaIMP-4; four blaNDM-5; three blaNDM-1; one blaOXA-181; one blaOXA-244; one blaNDM-1 + blaOXA-181; and one blaNDM-5 + blaOXA-181. Transmissible carbapenemase genes were also detected among two Acinetobacter baumannii complex isolates (blaOXA-23) and one P. aeruginosa (blaNDM-1) in the 2022 survey.


Asunto(s)
Antibacterianos , Sepsis , Humanos , Antibacterianos/farmacología , Agar , Escherichia coli , Farmacorresistencia Bacteriana , Australia/epidemiología , Sepsis/epidemiología , Klebsiella pneumoniae , Pseudomonas aeruginosa
9.
Artículo en Inglés | MEDLINE | ID: mdl-37968068

RESUMEN

From 1 January to 31 December 2022, fifty-five institutions across Australia participated in the Australian Enterococcal Surveillance Outcome Program (AESOP). The aim of AESOP 2022 was to determine the proportion of enterococcal bacteraemia isolates in Australia that were antimicrobial resistant, and to characterise the molecular epidemiology of the Enterococcus faecium isolates. Of the 1,535 unique episodes of enterococcal bacteraemia investigated, 92.8% were caused by either E. faecalis (52.9%) or E. faecium (39.9%). Ampicillin and vancomycin resistance were not detected in E. faecalis but were detected in 95.4% and 46.9% of E. faecium respectively. One E. faecalis isolate, with a daptomycin minimum inhibitory concentration (MIC) of 8.0 mg/L, harboured the F478L GdpD mutation. One E. faecium with a daptomycin MIC of 24.0 mg/L harboured the A20D Cls mutation; both mutations are known to be associated with daptomycin resistance. Two E. faecium isolates, one with a linezolid MIC ≥ 256 mg/L and the other with a linezolid MIC of 16 mg/L, harboured the 23S rRNA G2576T mutation, a mutation associated with linezolid resistance in enterococci. Overall, 48.8% of E. faecium harboured either the vanA or the vanB gene, of which 28.0% harboured vanA and 72.0% harboured vanB. The percentage of vancomycin-resistant E. faecium bacteraemia isolates in Australia remains substantially higher than that recorded in most European countries. The E. faecium isolates consisted of 62 multi-locus sequence types (STs); 85.5% of isolates were classified into eight major STs each containing ten or more isolates. All major STs belonged to clonal complex (CC) 17, a major hospital-adapted polyclonal E. faecium cluster. The major STs (ST17, ST78, ST80, ST117, ST555, ST796, ST1421, and ST1424) were each found across most regions of Australia. The predominant ST was ST17, which was identified in all regions. Overall, 53.7% of isolates belonging to the eight major STs harboured the vanA or vanB gene. AESOP 2022 has shown that enterococcal bacteraemia episodes in Australia are frequently caused by polyclonal ampicillin-resistant high-level gentamicin resistant vanA- or vanB-positive E. faecium which have limited treatment options.


Asunto(s)
Antiinfecciosos , Bacteriemia , Daptomicina , Infecciones por Bacterias Grampositivas , Sepsis , Humanos , Antibacterianos/farmacología , Agar , Australia/epidemiología , Linezolid , Farmacorresistencia Bacteriana , Infecciones por Bacterias Grampositivas/epidemiología , Enterococcus , Sepsis/epidemiología , Bacteriemia/epidemiología , Antiinfecciosos/farmacología , Ampicilina
10.
Int J Antimicrob Agents ; 62(6): 107014, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866472

RESUMEN

Antimicrobial resistance (AMR) is a major global public health threat, particularly affecting patients in resource-poor settings. Comprehensive surveillance programmes are essential to reducing the high mortality and morbidity associated with AMR and are integral to informing treatment decisions and guidelines, appraising the effectiveness of intervention strategies, and directing development of new antibacterial agents. Various surveillance programmes exist worldwide, including those administered by government bodies or funded by the pharmaceutical industry. One of the largest and longest running industry-sponsored AMR surveillance programme is the Study for Monitoring Antimicrobial Resistance Trends (SMART), which recently completed its 20th year. The SMART database has grown to almost 500 000 isolates from over 200 sites in more than 60 countries, encompassing all major geographic regions and including many sites in low- and middle-income countries. The SMART surveillance programme has evolved in scope over time, including additional antibacterial agents, pathogens and infection sites, in line with changing epidemiology and medical need. Surveillance data from SMART and similar programmes have been used successfully to detect emerging resistance threats and AMR patterns in specific countries and regions, thus informing national and local clinical treatment guidelines. The SMART database can be accessed readily by physicians and researchers globally, which may be especially valuable to those from countries with limited healthcare resources, where surveillance and resistance data are rarely collected. Continued participation from as many sites as possible worldwide and maintenance of adequate funding are critical factors to fully realising the potential of large-scale AMR surveillance programmes into the future.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
11.
Open Forum Infect Dis ; 10(6): ofad263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37323424

RESUMEN

Hyperammonemia syndrome (HS) is a life-threatening condition occurring in solid organ transplant patients, affecting primarily lung recipients, and is associated with Mycoplasma hominis and/or Ureaplasma spp infection. The organ donor was a young man who died of hypoxic brain injury and had urethral discharge antemortem. The donor and 4 solid organ transplant recipients had infection with M hominis and/or Ureaplasma spp. The lung and heart recipients both developed altered conscious state and HS associated with M hominis and Ureaplasma spp infections. Despite treatment with antibiotics and ammonia scavengers, both the lung and heart recipients died at day +102 and day +254, respectively. After diagnosis in the thoracic recipients, screening samples from the liver recipient and 1 kidney recipient were culture positive for M hominis with or without Ureaplasma spp. Neither the liver nor kidney recipients developed HS. Our case series demonstrates the unique finding of M hominis and Ureaplasma spp dissemination from an immunocompetent donor across 4 different organ recipients. Phylogenetic whole genome sequencing analysis demonstrated that M hominis samples from recipients and donor were closely related, suggesting donor-derived infection. Screening of lung donors and/or recipients for Mycoplasma and Ureaplasma spp is recommended, as well as prompt treatment with antimicrobials to prevent morbidity.

12.
Infect Dis Ther ; 12(7): 1875-1889, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37341866

RESUMEN

INTRODUCTION: Antimicrobial resistance (AMR) is a global public health challenge requiring a global response to which Australia has issued a National Antimicrobial Resistance Strategy. The necessity for continued-development of new effective antimicrobials is required to tackle this immediate health threat is clear, but current market conditions may undervalue antimicrobials. We aimed to estimate the health-economic benefits of reducing AMR levels for drug-resistant gram-negative pathogens in Australia, to inform health policy decision-making. METHODS: A published and validated-dynamic health economic model was adapted to the Australian setting. Over a 10-year time horizon, the model estimates the clinical and economic outcomes associated with reducing current AMR levels, by up to 95%, of three gram-negative pathogens in three hospital-acquired infections, from the perspective of healthcare payers. A willingness-to-pay threshold of AUD$15,000-$45,000 per quality-adjusted life-year (QALY) gained and a 5% discount rate (for costs and benefits) were applied. RESULTS: Over ten years, reducing AMR for gram-negative pathogens in Australia is associated with up to 10,251 life-years and 8924 QALYs gained, 9041 bed-days saved and 6644 defined-daily doses of antibiotics avoided. The resulting savings are estimated to be $10.5 million in hospitalisation costs, and the monetary benefit at up to $412.1 million. DISCUSSION: Our results demonstrate the clinical and economic value of reducing AMR impact in Australia. Of note, since our analysis only considered a limited number of pathogens in the hospital setting only and for a limited number of infection types, the benefits of counteracting AMR are likely to extend well beyond the ones demonstrated here. CONCLUSION: These estimates demonstrate the consequences of failure to combat AMR in the Australian context. The benefits in mortality and health system costs justify consideration of innovative reimbursement schemes to encourage the development and commercialisation of new effective antimicrobials.

13.
Int J Antimicrob Agents ; 62(1): 106849, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187337

RESUMEN

Vancomycin variable enterococci (VVE) are van-positive enterococci with a vancomycin-susceptible phenotype (VVE-S) that can convert to a resistant phenotype (VVE-R) and be selected for during vancomycin exposure. VVE-R outbreaks have been reported in Canada and Scandinavian countries. The aim of this study was to examine the presence of VVE in whole genome sequenced (WGS) Australian bacteremia Enterococcus faecium (Efm) isolates collected through the Australian Group on Antimicrobial resistance (AGAR) network. Eight potential VVEAus isolates, all identified as Efm ST1421, were selected based on the presence of vanA and a vancomycin-susceptible phenotype. During vancomycin selection, two potential VVE-S harboring intact vanHAX genes, but lacking the prototypic vanRS and vanZ genes, reverted to a resistant phenotype (VVEAus-R). Spontaneous VVEAus-R reversion occurred at a frequency of 4-6 × 10-8 resistant colonies per parent cell in vitro after 48 h and led to high-level vancomycin and teicoplanin resistance. The S to R reversion was associated with a 44-bp deletion in the vanHAX promoter region and an increased vanA plasmid copy number. The deletion in the vanHAX promoter region enables an alternative constitutive promoter for the expression of vanHAX. Acquisition of vancomycin resistance was associated with a low fitness cost compared with the corresponding VVEAus-S isolate. The relative proportion of VVEAus-R vs. VVEAus-S decreased over time in serial passages without vancomycin selection. Efm ST1421 is one of the predominant VanA-Efm multilocus sequence types found across most regions of Australia, and has also been associated with a major prolonged VVE outbreak in Danish hospitals.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Humanos , Vancomicina/farmacología , Enterococcus faecium/genética , Antibacterianos/farmacología , Variaciones en el Número de Copia de ADN , Australia/epidemiología , Enterococcus/genética , Plásmidos/genética , Familia de Multigenes , Infecciones por Bacterias Grampositivas/epidemiología , Proteínas Bacterianas/genética
14.
J Antimicrob Chemother ; 78(6): 1499-1504, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37071589

RESUMEN

OBJECTIVES: There is clinical uncertainty over the optimal treatment for penicillin-susceptible Staphylococcus aureus (PSSA) infections. Furthermore, there is concern that phenotypic penicillin susceptibility testing methods are not reliably able to detect some blaZ-positive S. aureus. METHODS: Nine S. aureus isolates, including six genetically diverse strains harbouring blaZ, were sent in triplicate to 34 participating laboratories from Australia (n = 14), New Zealand (n = 6), Canada (n = 12), Singapore (n = 1) and Israel (n = 1). We used blaZ PCR as the gold standard to assess susceptibility testing performance of CLSI (P10 disc) and EUCAST (P1 disc) methods. Very major errors (VMEs), major error (MEs) and categorical agreement were calculated. RESULTS: Twenty-two laboratories reported 593 results according to CLSI methodology (P10 disc). Nineteen laboratories reported 513 results according to the EUCAST (P1 disc) method. For CLSI laboratories, the categorical agreement and calculated VME and ME rates were 85% (508/593), 21% (84/396) and 1.5% (3/198), respectively. For EUCAST laboratories, the categorical agreement and calculated VME and ME rates were 93% (475/513), 11% (84/396) and 1% (3/198), respectively. Seven laboratories reported results for both methods, with VME rates of 24% for CLSI and 12% for EUCAST. CONCLUSIONS: The EUCAST method with a P1 disc resulted in a lower VME rate compared with the CLSI methods with a P10 disc. These results should be considered in the context that among collections of PSSA isolates, as determined by automated MIC testing, less than 10% harbour blaZ. Furthermore, the clinical relevance of phenotypically susceptible, but blaZ-positive S. aureus, remains unclear.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Staphylococcus aureus/genética , Penicilinas/farmacología , Pruebas de Sensibilidad Microbiana , Toma de Decisiones Clínicas , Incertidumbre
15.
Microb Genom ; 9(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36988578

RESUMEN

In Australia, gonococcal isolates are monitored for antimicrobial susceptibilities. In Western Australia (WA), gonorrhoea notification rates increased by 63 % between 2013 and 2016, with the steepest increase occurring between 2015 and 2016, before stabilizing at this higher baseline between 2017 and 2020. This increased prevalence was associated with antimicrobial-susceptible (AMS) lineages. To understand the provenance of these isolates causing gonorrhoea in WA, whether they were introduced or expanded from endogenous lineages, 741 isolates were collected in 2017 and characterized by both iPLEX typing and whole genome sequencing (WGS). Antibiograms and genocoding of the isolates revealed that AMS isolates were most prevalent in the remote regions, while the urban/rural regions were characterized by antimicrobial-resistant (AMR) isolates. iPLEX typing identified 78 iPLEX genotypes (WA-1 to WA-78) of which 20 accounted for over 88 % of isolates. WA-10 was the most frequently identified genotype in the urban/rural regions whilst WA-29 was the most frequently identified genotype in the remote regions. Genotypes WA-38, WA-52 and WA-13 accounted for 81 % (n=36/44) of the azithromycin-resistant N. gonorrhoeae (AziR) isolates. A representative isolate of each iPLEX genotype and AMR biotype was whole genome sequenced and analysed using MLST, NG-MAST and NG-STAR, and the novel core genome clustering Ng_cgc_400 typing scheme. Five predominant Bayesian population groups (termed BPG-1 to 5) were identified in the study collection. BPG-1 and BPG-2 were associated with AMS isolates from the remote regions. BPG-1 and BPG-2 were shown to be unique to the remote regions based on a minimum spanning tree against 4000 international isolates. AMS isolates in urban/rural regions were dominated by international lineages. AziR and Cef DS (decreased susceptibility to ceftriaxone) was concentrated in three urban/rural genomic groups (BPG-3, 4 and 5). Azithromycin minimum inhibitory concentrations (0.5-16 mg l-1) correlated with the accumulation of mtrR mutations or/and the fraction of 23S rRNA C2611T mutated copies. The majority of isolates in BPG-3, 4 and 5 could be correlated with known AMR lineages circulating globally and nationally. In conclusion, the surge in AMS isolates in WA in 2017 was due to importation of international AMS lineages into urban/rural regions, whilst the local AMS lineages persisted largely in the remote regions. Bridging between the urban/rural and remote regions was relatively rare, but continued surveillance is required to prevent ingress of AMR strains/lineages into the remote regions of WA.


Asunto(s)
Antiinfecciosos , Gonorrea , Humanos , Neisseria gonorrhoeae , Gonorrea/epidemiología , Gonorrea/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Azitromicina/farmacología , Tipificación de Secuencias Multilocus , Australia Occidental/epidemiología , Teorema de Bayes , Viaje , Epidemiología Molecular
17.
Artículo en Inglés | MEDLINE | ID: mdl-36529133

RESUMEN

Abstract: From 1 January to 31 December 2021, forty-eight institutions around Australia participated in the Australian Staphylococcus aureus Surveillance Outcome Programme (ASSOP). The aim of ASSOP 2021 was to determine the proportion of Staphylococcus aureus bacteraemia (SAB) isolates in Australia that were antimicrobial resistant, with particular emphasis on susceptibility to methicillin and on characterisation of the molecular epidemiology of the methicillin-resistant isolates. A total of 2,928 SAB episodes were reported, of which 78.4% were community-onset. Overall, 16.9% of S. aureus isolates were methicillin resistant. The 30-day all-cause mortality associated with methicillin-resistant SAB was 15.0%, which was not significantly different from the 14.4% all-cause mortality associated with methicillin-susceptible SAB (p = 0.7). With the exception of the ß-lactams and erythromycin, antimicrobial resistance in methicillin-susceptible S. aureus was rare. However, in addition to the ß-lactams, approximately 36% of methicillin-resistant S. aureus (MRSA) were resistant to ciprofloxacin; 30% to erythromycin; 15% to tetracycline; 16% to gentamicin; and 3% to co-trimoxazole. When applying the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, teicoplanin resistance was detected in three S. aureus isolates. Resistance to vancomycin or linezolid was not detected. Resistance to non-ß-lactam antimicrobials was largely attributable to the healthcare-associated MRSA (HA-MRSA) clone ST22-IV [2B] (EMRSA-15), and the community-associated MRSA (CA-MRSA) clone ST45-V [5C2&5] which has acquired multiple antimicrobial resistance determinants including ciprofloxacin, erythromycin, clindamycin, gentamicin and tetracycline. The ST22-IV [2B] (EMRSA-15) clone is the predominant HA-MRSA clone in Australia. Nonetheless, 85% of methicillin-resistant SAB episodes were due to CA-MRSA clones. Although polyclonal, approximately 68% of CA-MRSA clones were characterised as ST93-IV [2B] (Queensland clone); ST45-V [5C2&5]; ST5-IV [2B]; ST1-IV [2B]; ST30-IV [2B]; and ST97-IV [2B]. As CA-MRSA is well established in the Australian community, it is important to monitor antimicrobial resistance patterns in community- and healthcare-associated SAB as this information will guide therapeutic practices in treating S. aureus bacteraemia.


Asunto(s)
Antiinfecciosos , Bacteriemia , Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Bacteriemia/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Agar/uso terapéutico , Australia/epidemiología , Meticilina/uso terapéutico , Pruebas de Sensibilidad Microbiana , Infección Hospitalaria/tratamiento farmacológico , Farmacorresistencia Bacteriana , Gentamicinas/uso terapéutico , Eritromicina/uso terapéutico , Ciprofloxacina/uso terapéutico , Tetraciclina/uso terapéutico
18.
Artículo en Inglés | MEDLINE | ID: mdl-36384434

RESUMEN

Abstract: From 1 January to 31 December 2021, forty-eight institutions around Australia participated in the Australian Enterococcal Surveillance Outcome Programme (AESOP). The aim of AESOP 2021 was to determine the proportion of enterococcal bacteraemia isolates in Australia that were antimicrobial resistant, and to characterise the molecular epidemiology of the Enterococcus faecium isolates. Of the 1,297 unique episodes of enterococcal bacteraemia investigated, 94.4% were caused by either E. faecalis (54.1%) or E. faecium (40.3%). Ampicillin resistance was detected in one E. faecalis isolate and in 89.3% of E. faecium isolates. Vancomycin non-susceptibility was not detected in E. faecalis but was detected in 37.9% of E. faecium. Overall, 39.6% of E. faecium harboured the vanA and/or vanB genes. For the vanA/vanB positive E. faecium isolates, 35.8% harboured the vanA gene and 64.2% the vanB gene. Although the percentage of vancomycin-resistant E. faecium bacteraemia isolates was significantly lower than that reported in the 2020 AESOP report (presumably due to the COVID-19 elective surgery restrictions placed on hospitals), it remains substantially higher than that recorded in most European countries. Isolates of E. faecium consisted of 73 multi-locus sequence types (STs); 77.2% of isolates were classified into seven major STs each containing more than ten isolates. All major STs belonged to clonal cluster (CC) 17, a major hospital-adapted polyclonal E. faecium cluster. The major STs (ST17, ST1424, ST796, ST78, ST80, ST1421 and ST555) were found across most regions of Australia. The predominant ST was ST17 which was identified in all regions except the Northern Territory. Overall, 46.5% of isolates belonging to the seven major STs harboured the vanA or vanB gene. The AESOP 2021 has shown that enterococcal bacteraemia episodes in Australia are frequently caused by polyclonal ampicillin-resistant high-level gentamicin resistant vanA- or vanB-positive E. faecium which have limited treatment options.


Asunto(s)
Bacteriemia , COVID-19 , Infecciones por Bacterias Grampositivas , Humanos , Antibacterianos/farmacología , Agar , Infecciones por Bacterias Grampositivas/epidemiología , Vancomicina , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana , Enterococcus/genética , Bacteriemia/epidemiología , Northern Territory
19.
Artículo en Inglés | MEDLINE | ID: mdl-36384435

RESUMEN

Abstract: The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric gram-negative pathogens. The 2021 survey was the ninth year to focus on bloodstream infections caused by Enterobacterales, and the seventh year where Pseudomonas aeruginosa and Acinetobacter species were included. The 2021 survey tested 8,947 isolates, comprising Enterobacterales (8,104; 90.6%), P. aeruginosa (745; 8.3%) and Acinetobacter species (98; 1.1%), using commercial automated methods. The results were analysed using Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (January 2022). Of the key resistances, resistance to the third-generation cephalosporin ceftriaxone was found in 12.5%/12.5% (CLSI/EUCAST criteria) of Escherichia coli and in 6.1%/6.1% of Klebsiella pneumoniae. Resistance rates to ciprofloxacin were 12.3%/12.3% for E. coli; 7.2%/7.2% for K. pneumoniae; 5.4%/5.4% for Enterobacter cloacae complex; and 3.7%/8.0% for P. aeruginosa. Resistance rates to piperacillin-tazobactam were 2.8%/6.5%; 2.9%/9.9%; 18.4%/28.1%; and 6.9%/12.8% for the same four species, respectively. Seventeen Enterobacterales isolates from 17 patients were shown to harbour a carbapenemase gene: 12 blaIMP-4; two blaNDM-7; one blaNDM-1; one blaOXA-181; and one blaKPC-2. No transmissible carbapenemase genes were detected among P. aeruginosa or Acinetobacter isolates in the 2021 survey.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Australia/epidemiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Agar , Escherichia coli , Pseudomonas aeruginosa , Klebsiella pneumoniae
20.
Microorganisms ; 10(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014068

RESUMEN

BACKGROUND: Defined by the emergence of antibiotic resistant strains, Staphylococcus aureus is a priority bacterial species with high antibiotic resistance. However, a rise in the prevalence of penicillin-susceptible S. aureus (PSSA) bloodstream infections has recently been observed worldwide, including in Australia, where the proportion of methicillin-susceptible S. aureus causing bacteremia identified phenotypically as penicillin-susceptible has increased by over 35%, from 17.5% in 2013 to 23.7% in 2020. OBJECTIVES: To determine the population structure of PSSA causing community- and hospital-onset bacteremia in Australia and to evaluate routine phenotypic antimicrobial susceptibility methods to reliably confirm penicillin resistance on blaZ-positive S. aureus initially classified as penicillin-susceptible by the Vitek® 2 automated microbiology system. RESULTS: Whole genome sequencing on 470 PSSA collected in the 2020 Australian Group on Antimicrobial Resistance Australian Staphylococcus aureus Sepsis Outcome Programme identified 84 multilocus sequence types (STs), of which 79 (463 isolates) were grouped into 22 clonal complexes (CCs). The dominant CCs included CC5 (31.9%), CC97 (10.2%), CC45 (10.0%), CC15 (8.7%), and CC188 (4.9%). Many of the CCs had multiple STs and spa types and, based on the immune evasion cluster type, isolates within a CC could be classified into different strains harboring a range of virulence and resistance genes. Phylogenetic analyses of the isolates showed most CCs were represented by one clade. The blaZ gene was identified in 45 (9.6%) PSSA. Although multiclonal, approximately 50% of blaZ-positive PSSA were from CC15 and were found to be genetically distant from the blaZ-negative CC15 PSSA. The broth microdilution, Etest® and cefinase, performed poorly; however, when the appearance of the zone edge was considered; as per the EUCAST and CLSI criteria, disc diffusion detected 100% of blaZ-positive PSSA. CONCLUSIONS: In Australia, PSSA bacteremia is not caused by the expansion of a single clone. Approximately 10% of S. aureus classified as penicillin-susceptible by the Vitek® 2 harbored blaZ. Consequently, we recommend that confirmation of Vitek® 2 PSSA be performed using an alternative method, such as disc diffusion with careful interpretation of the zone edge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...