Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurol Clin Pract ; 9(2): e17-e18, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31041142
2.
PLoS One ; 6(10): e25404, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22003390

RESUMEN

Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.


Asunto(s)
Eliminación de Gen , Deficiencias de Hierro , Proteína 2 Reguladora de Hierro/deficiencia , Proteína 2 Reguladora de Hierro/genética , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Animales , Apoferritinas/biosíntesis , Atrofia/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Óxidos N-Cíclicos/farmacología , Homeostasis/efectos de los fármacos , Homeostasis/genética , Hierro/metabolismo , Proteína 1 Reguladora de Hierro/deficiencia , Proteína 1 Reguladora de Hierro/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Neuronas Motoras/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Marcadores de Spin , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología
3.
Semin Pediatr Neurol ; 13(3): 142-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17101452

RESUMEN

Brain iron uptake is regulated by the expression of transferrin receptor 1 in endothelial cells of the blood-brain barrier. Transferrin-bound iron in the systemic circulation is endocytosed by brain endothelial cells, and elemental iron is released to brain interstitial fluid, likely by the iron exporter, ferroportin. Transferrin synthesized by oligodendrocytes in the brain binds much of the iron that traverses the blood-brain barrier after oxidation of the iron, most likely by a glycophosphosinositide-linked ceruloplasmin found in astrocytic foot processes that ensheathe brain endothelial cells. Neurons acquire iron from diferric transferrin, but it is less clear how glial cells acquire iron. In aging mammals, iron accumulates in the basal ganglia, and iron accumulation is believed to contribute to neurodegenerative diseases, including Parkinson and Alzheimer disease. Here we consider the possibility that iron accumulations, which are often thought to facilitate free radical generation and oxidative damage, may contain insoluble iron that is unavailable for cellular use, and the pathology associated with iron accumulations may result from functional iron deficiency in some diseases.


Asunto(s)
Encéfalo/metabolismo , Trastornos del Metabolismo del Hierro/fisiopatología , Hierro/metabolismo , Animales , Barrera Hematoencefálica , Sistema Nervioso Central/metabolismo , Humanos , Trastornos del Metabolismo del Hierro/complicaciones , Degeneración Nerviosa/etiología
4.
Cell Metab ; 2(6): 399-409, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16330325

RESUMEN

Hereditary hemochromatosis, characterized by iron overload in multiple organs, is one of the most common genetic disorders among Caucasians. Hepcidin, which is synthesized in the liver, plays important roles in iron overload syndromes. Here, we show that a Cre-loxP-mediated liver-specific disruption of SMAD4 results in markedly decreased hepcidin expression and accumulation of iron in many organs, which is most pronounced in liver, kidney, and pancreas. Transcript levels of genes involved in intestinal iron absorption, including Dcytb, DMT1, and ferroportin, are significantly elevated in the absence of hepcidin. We demonstrate that ectopic overexpression of SMAD4 activates the hepcidin promoter and is associated with epigenetic modification of histone H3 to a transcriptionally active form. Moreover, transcriptional activation of hepcidin is abrogated in SMAD4-deficient hepatocytes in response to iron overload, TGF-beta, BMP, or IL-6. Our study uncovers a novel role of TGF-beta/SMAD4 in regulating hepcidin expression and thus intestinal iron transport and iron homeostasis.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/biosíntesis , Regulación de la Expresión Génica , Proteína Smad4/fisiología , Alelos , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Transporte Biológico , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Inmunoprecipitación de Cromatina , Clonación Molecular , Grupo Citocromo b/metabolismo , Cartilla de ADN/química , Ferrocianuros/farmacología , Colorantes Fluorescentes/farmacología , Hepatocitos/citología , Hepcidinas , Histonas/metabolismo , Inmunohistoquímica , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Hierro/química , Hierro/metabolismo , Proteínas de Unión a Hierro/metabolismo , Hígado/metabolismo , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas/metabolismo , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Smad4/metabolismo , Factores de Tiempo , Transcripción Genética , Activación Transcripcional , Factor de Crecimiento Transformador beta/metabolismo
5.
Blood ; 106(3): 1084-91, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15831703

RESUMEN

Iron-regulatory proteins (IRPs) 1 and 2 posttranscriptionally regulate expression of transferrin receptor (TfR), ferritin, and other iron metabolism proteins. Mice with targeted deletion of IRP2 overexpress ferritin and express abnormally low TfR levels in multiple tissues. Despite this misregulation, there are no apparent pathologic consequences in tissues such as the liver and kidney. However, in the central nervous system, evidence of abnormal iron metabolism in IRP2-/- mice precedes the development of adult-onset progressive neurodegeneration, characterized by widespread axonal degeneration and neuronal loss. Here, we report that ablation of IRP2 results in iron-limited erythropoiesis. TfR expression in erythroid precursors of IRP2-/- mice is reduced, and bone marrow iron stores are absent, even though transferrin saturation levels are normal. Marked overexpression of 5-aminolevulinic acid synthase 2 (Alas2) results from loss of IRP-dependent translational repression, and markedly increased levels of free protoporphyrin IX and zinc protoporphyrin are generated in IRP2-/- erythroid cells. IRP2-/- mice represent a new paradigm of genetic microcytic anemia. We postulate that IRP2 mutations or deletions may be a cause of refractory microcytic anemia and bone marrow iron depletion in patients with normal transferrin saturations, elevated serum ferritins, elevated red cell protoporphyrin IX levels, and adult-onset neurodegeneration.


Asunto(s)
Anemia/genética , Proteína 2 Reguladora de Hierro/deficiencia , Degeneración Nerviosa/genética , Protoporfiria Eritropoyética/genética , Anemia/etiología , Animales , Médula Ósea/metabolismo , Células Precursoras Eritroides/química , Eritropoyesis , Ferritinas/sangre , Hierro/metabolismo , Proteína 2 Reguladora de Hierro/genética , Ratones , Ratones Noqueados , Degeneración Nerviosa/etiología , Protoporfiria Eritropoyética/etiología , Protoporfirinas/análisis , Receptores de Transferrina/análisis , Transferrina/análisis
6.
Ann N Y Acad Sci ; 1012: 65-83, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15105256

RESUMEN

In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult-onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/- IRP2-/-) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2-/- and IRP1+/- IRP2-/- mouse models of neurodegeneration.


Asunto(s)
Proteínas Reguladoras del Hierro/deficiencia , Hierro/metabolismo , Degeneración Nerviosa/metabolismo , Factores de Edad , Animales , Axones/patología , Axones/ultraestructura , Western Blotting/métodos , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Encéfalo/patología , Recuento de Células/métodos , Células Cultivadas , Embrión de Mamíferos , Ferritinas/metabolismo , Fuerza de la Mano/fisiología , Inmunohistoquímica/métodos , Proteínas Reguladoras del Hierro/sangre , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Ratones , Ratones Noqueados , Microglía/metabolismo , Microscopía Electrónica/métodos , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Receptores de Transferrina/metabolismo , Células Madre , Tirosina 3-Monooxigenasa/metabolismo , Ubiquitina/metabolismo , Vacuolas/patología
7.
Brain Res ; 1001(1-2): 108-17, 2004 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-14972659

RESUMEN

Iron homeostasis in the mammalian brain is an important and poorly understood subject. Transferrin-bound iron enters the endothelial cells of the blood-brain barrier from the systemic circulation, and iron subsequently dissociates from transferrin to enter brain parenchyma by an unknown mechanism. In recent years, several iron transporters, including the iron importer DMT1 (Ireg1, MTP, DCT1) and the iron exporter ferroportin (SLC11A3, Ireg, MTP1) have been cloned and characterized. To better understand brain iron homeostasis, we have characterized the distribution of ferroportin, the presumed intestinal iron exporter, and have evaluated its potential role in regulation of iron homeostasis in the central nervous system. We discovered using in situ hybridization and immunohistochemistry that ferroportin is expressed in the endothelial cells of the blood-brain barrier, in neurons, oligodendrocytes, astrocytes, and the choroid plexus and ependymal cells. In addition, we discovered using techniques of immunoelectron microscopy and biochemical purification of synaptic vesicles that ferroportin is associated with synaptic vesicles. In the blood-brain barrier, it is likely that ferroportin serves as a molecular transporter of iron on the abluminal membrane of polarized endothelial cells. The role of ferroportin in synaptic vesicles is unknown, but its presence at that site may prove to be of great importance in neuronal iron toxicity. The widespread representation of ferroportin at sites such as the blood-brain barrier and synaptic vesicles raises the possibility that trafficking of elemental iron may be instrumental in the distribution of iron in the central nervous system.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Proteínas de Transporte de Catión/metabolismo , Expresión Génica , Vesículas Sinápticas/metabolismo , Animales , Barrera Hematoencefálica/citología , Western Blotting , Encéfalo/citología , Encéfalo/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/inmunología , Células Endoteliales/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Hierro/metabolismo , Proteína 2 Reguladora de Hierro/genética , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica/métodos , Péptidos/inmunología , Péptidos/metabolismo , Vesículas Sinápticas/ultraestructura , Sinaptosomas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...