Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 33(35): 14001-16, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23986237

RESUMEN

The distinctive planar polarity of auditory hair cells is evident in the polarized organization of the stereociliary bundle. Mutations in the core planar cell polarity gene Van Gogh-like 2 (Vangl2) result in hair cells that fail to properly orient their stereociliary bundles along the mediolateral axis of the cochlea. The severity of this phenotype is graded along the length of the cochlea, similar to the hair cell differentiation gradient, suggesting that an active refinement process corrects planar polarity phenotypes in Vangl2 knock-out (KO) mice. Because Vangl2 gene deletions are lethal, Vangl2 conditional knock-outs (CKOs) were generated to test this hypothesis. When crossed with Pax2-Cre, Vangl2 is deleted from the inner ear, yielding planar polarity phenotypes similar to Vangl2 KOs at late embryonic stages except that Vangl2 CKO mice are viable and do not have craniorachischisis like Vangl2 KOs. Quantification of planar polarity deficits through postnatal development demonstrates the activity of a Vangl2-independent refinement process that rescues the planar polarity phenotype within 10 d of birth. In contrast, the Pax2-Cre;Vangl2 CKO has profound changes in the shape and distribution of outer pillar cell and Deiters' cell phalangeal processes that are not corrected during the period of planar polarity refinement. Auditory brainstem response analyses of adult mice show a 10-15 dB shift in auditory threshold, and distortion product otoacoustic emission measurements indicate that this mild hearing deficit is of cochlear origin. Together, these data demonstrate a Vangl2-independent refinement mechanism that actively reorients auditory stereociliary bundles and reveals an unexpected role of Vangl2 during supporting cell morphogenesis.


Asunto(s)
Células Ciliadas Auditivas/citología , Proteínas del Tejido Nervioso/genética , Animales , Umbral Auditivo , Tronco Encefálico/fisiología , Diferenciación Celular , Cóclea/citología , Cóclea/embriología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva/genética , Ratones , Ratones Noqueados , Fenotipo , Estereocilios/ultraestructura
2.
PLoS One ; 7(2): e31988, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363783

RESUMEN

Experiments utilizing the Looptail mutant mouse, which harbors a missense mutation in the vangl2 gene, have been essential for studies of planar polarity and linking the function of the core planar cell polarity proteins to other developmental signals. Originally described as having dominant phenotypic traits, the molecular interactions underlying the Looptail mutant phenotype are unclear because Vangl2 protein levels are significantly reduced or absent from mutant tissues. Here we introduce a vangl2 knockout mouse and directly compare the severity of the knockout and Looptail mutant phenotypes by intercrossing the two lines and assaying the planar polarity of inner ear hair cells. Overall the vangl2 knockout phenotype is milder than the phenotype of compound mutants carrying both the Looptail and vangl2 knockout alleles. In compound mutants a greater number of hair cells are affected and changes in the orientation of individual hair cells are greater when quantified. We further demonstrate in a heterologous cell system that the protein encoded by the Looptail mutation (Vangl2(S464N)) disrupts delivery of Vangl1 and Vangl2 proteins to the cell surface as a result of oligomer formation between Vangl1 and Vangl2(S464N), or Vangl2 and Vangl2(S464N), coupled to the intracellular retention of Vangl2(S464N). As a result, Vangl1 protein is missing from the apical cell surface of vestibular hair cells in Looptail mutants, but is retained at the apical cell surface of hair cells in vangl2 knockouts. Similarly the distribution of Prickle-like2, a putative Vangl2 interacting protein, is differentially affected in the two mutant lines. In summary, we provide evidence for a direct physical interaction between Vangl1 and Vangl2 through a combination of in vitro and in vivo approaches and propose that this interaction underlies the dominant phenotypic traits associated with the Looptail mutation.


Asunto(s)
Genes Dominantes/genética , Células Ciliadas Auditivas/patología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Polaridad Celular , Proliferación Celular , Marcación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/patología , Humanos , Inmunoprecipitación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/anomalías , Tubo Neural/metabolismo , Tubo Neural/patología , Fenotipo , Transporte de Proteínas , Sáculo y Utrículo/metabolismo , Sáculo y Utrículo/patología , Estereocilios/patología , Fracciones Subcelulares/metabolismo
3.
Neuron ; 71(5): 820-32, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-21903076

RESUMEN

Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution.


Asunto(s)
Células Amacrinas/fisiología , Cadherinas/fisiología , Dendritas/genética , Retina/citología , Factores de Edad , Células Amacrinas/clasificación , Células Amacrinas/citología , Células Amacrinas/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cadherinas/deficiencia , Movimiento Celular/genética , Dendritas/metabolismo , Dendritas/ultraestructura , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intercelular , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/fisiología , ARN Mensajero/metabolismo , Retina/crecimiento & desarrollo , Factores de Transcripción/genética , Tirosina 3-Monooxigenasa/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...