Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 7(6): 1956-67, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24910437

RESUMEN

Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células del Estroma/citología , Células del Estroma/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL
2.
Exp Mol Med ; 45: e55, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24232254

RESUMEN

Hematopoietic stem cells (HSCs) comprise a rare population of cells that can regenerate and maintain lifelong blood cell production. This functionality is achieved through their ability to undergo many divisions without activating a poised, but latent, capacity for differentiation into multiple blood cell types. Throughout life, HSCs undergo sequential changes in several key properties. These affect mechanisms that regulate the self-renewal, turnover and differentiation of HSCs as well as the properties of the committed progenitors and terminally differentiated cells derived from them. Recent findings point to the Lin28b-let-7 pathway as a master regulator of many of these changes with important implications for the clinical use of HSCs for marrow rescue and gene therapy, as well as furthering our understanding of the different pathogenesis of childhood and adult-onset leukemia.


Asunto(s)
Linaje de la Célula , Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/metabolismo , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Leucemia/etiología , Leucemia/metabolismo , Leucemia/cirugía , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Nat Cell Biol ; 15(8): 916-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23811688

RESUMEN

Mouse haematopoietic stem cells (HSCs) undergo a postnatal transition in several properties, including a marked reduction in their self-renewal activity. We now show that the developmentally timed change in this key function of HSCs is associated with their decreased expression of Lin28b and an accompanying increase in their let-7 microRNA levels. Lentivirus-mediated overexpression of Lin28 in adult HSCs elevates their self-renewal activity in transplanted irradiated hosts, as does overexpression of Hmga2, a well-established let-7 target that is upregulated in fetal HSCs. Conversely, HSCs from fetal Hmga2(-/-) mice do not exhibit the heightened self-renewal activity that is characteristic of wild-type fetal HSCs. Interestingly, overexpression of Hmga2 in adult HSCs does not mimic the ability of elevated Lin28 to activate a fetal lymphoid differentiation program. Thus, Lin28b may act as a master regulator of developmentally timed changes in HSC programs with Hmga2 serving as its specific downstream modulator of HSC self-renewal potential.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína HMGA2/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , MicroARNs/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Proliferación Celular , Feto , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Proteína HMGA2/genética , Linfocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Proteínas de Unión al ARN , Transducción de Señal , Regulación hacia Arriba
4.
Cell Stem Cell ; 10(6): 690-697, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22704509

RESUMEN

Over the past 10 years, increasing evidence has accumulated that heterogeneity is a feature of hematopoietic stem cell (HSC) proliferation, self-renewal, and differentiation based on examination of these properties at a clonal level. The heterogeneous behavior of HSCs reflects the operation of a complex interplay of intrinsic and extrinsic variables. In this review, we discuss key findings from the last 5 years that reveal new insights into the mechanisms involved.


Asunto(s)
Diferenciación Celular , Células Clonales/patología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Neoplasias/patología , Neoplasias/terapia , Animales , Humanos
5.
Cell Stem Cell ; 10(3): 273-83, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385655

RESUMEN

Adult hematopoietic stem cells (HSCs) with serially transplantable activity comprise two subtypes. One shows a balanced output of mature lymphoid and myeloid cells; the other appears selectively lymphoid deficient. We now show that both of these HSC subtypes are present in the fetal liver (at a 1:10 ratio) with the rarer, lymphoid-deficient HSCs immediately gaining an increased representation in the fetal bone marrow, suggesting that the marrow niche plays a key role in regulating their ensuing preferential amplification. Clonal analysis of HSC expansion posttransplant showed that both subtypes display an extensive but variable self-renewal activity with occasional interconversion. Clonal analysis of their differentiation programs demonstrated functional and molecular as well as quantitative HSC subtype-specific differences in the lymphoid progenitors they generate but an indistinguishable production of multipotent and myeloid-restricted progenitors. These findings establish a level of heterogeneity in HSC differentiation and expansion control that may have relevance to stem cell populations in other hierarchically organized tissues.


Asunto(s)
Células Madre Hematopoyéticas/citología , Linfopoyesis , Animales , Diferenciación Celular , Linaje de la Célula , Senescencia Celular , Femenino , Citometría de Flujo , Humanos , Ratones , Ratones Endogámicos C57BL , Embarazo
6.
Nat Methods ; 8(7): 581-6, 2011 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-21602799

RESUMEN

Heterogeneity in cell populations poses a major obstacle to understanding complex biological processes. Here we present a microfluidic platform containing thousands of nanoliter-scale chambers suitable for live-cell imaging studies of clonal cultures of nonadherent cells with precise control of the conditions, capabilities for in situ immunostaining and recovery of viable cells. We show that this platform mimics conventional cultures in reproducing the responses of various types of primitive mouse hematopoietic cells with retention of their functional properties, as demonstrated by subsequent in vitro and in vivo (transplantation) assays of recovered cells. The automated medium exchange of this system made it possible to define when Steel factor stimulation is first required by adult hematopoietic stem cells in vitro as the point of exit from quiescence. This technology will offer many new avenues to interrogate otherwise inaccessible mechanisms governing mammalian cell growth and fate decisions.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Hematopoyéticas/citología , Técnicas Analíticas Microfluídicas/métodos , Análisis de Matrices Tisulares , Adulto , Técnicas de Cultivo de Célula/instrumentación , Proliferación Celular , Ensayos Analíticos de Alto Rendimiento , Humanos , Técnicas Analíticas Microfluídicas/instrumentación
7.
Blood ; 113(25): 6342-50, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19377048

RESUMEN

Hematopoietic stem cells (HSCs) are generally defined by their dual properties of pluripotency and extensive self-renewal capacity. However, a lack of experimental clarity as to what constitutes extensive self-renewal capacity coupled with an absence of methods to prospectively isolate long-term repopulating cells with defined self-renewal activities has made it difficult to identify the essential components of the self-renewal machinery and investigate their regulation. We now show that cells capable of repopulating irradiated congenic hosts for 4 months and producing clones of cells that can be serially transplanted are selectively and highly enriched in the CD150(+) subset of the EPCR(+)CD48(-)CD45(+) fraction of mouse fetal liver and adult bone marrow cells. In contrast, cells that repopulate primary hosts for the same period but show more limited self-renewal activity are enriched in the CD150(-) subset. Comparative transcriptome analyses of these 2 subsets with each other and with HSCs whose self-renewal activity has been rapidly extinguished in vitro revealed 3 new genes (VWF, Rhob, Pld3) whose elevated expression is a consistent and selective feature of the long-term repopulating cells with durable self-renewal capacity. These findings establish the identity of a phenotypically and molecularly distinct class of pluripotent hematopoietic cells with lifelong self-renewal capacity.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/citología , Animales , Animales Congénicos , Antígenos CD/análisis , Antígenos de Diferenciación/análisis , Células de la Médula Ósea/citología , División Celular , Células Cultivadas/trasplante , Perfilación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Inmunofenotipificación , Antígenos Comunes de Leucocito/análisis , Hígado/citología , Hígado/embriología , Ratones , Ratones Endogámicos C57BL , Fosfolipasa D/análisis , Quimera por Radiación , Receptores de Superficie Celular/análisis , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Proteína de Unión al GTP rhoB/análisis , Proteína de Unión al GTP rhoB/genética , Factor de von Willebrand/análisis , Factor de von Willebrand/genética
8.
Blood ; 109(11): 5043-8, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17327414

RESUMEN

Fetal hematopoietic stem cells (HSCs) regenerate daughter HSCs in irradiated recipients more rapidly than do adult HSCs. However, both types of HSCs divide in vitro with the same cell-cycle transit times, suggesting different intrinsically determined self-renewal activities. To investigate the mechanism(s) underlying these differences, we compared fetal and adult HSC responses to Steel factor (SF) stimulation in vitro and in vivo. These experiments were undertaken with both wild-type cells and W(41)/W(41) cells, which have a functionally deficient c-kit kinase. In vitro, fetal HSC self-renewal divisions, like those of adult HSCs, were found to be strongly dependent on c-kit activation, but the fetal HSCs responded to much lower SF concentrations in spite of indistinguishable levels of c-kit expression. Fetal W(41)/W(41) HSCs also mimicked adult wild-type HSCs in showing the same reduced rate of amplification in irradiated adult hosts (relative to fetal wild-type HSCs). Assessment of various proliferation and signaling gene transcripts in fetal and adult HSCs self-renewing in vitro revealed a singular difference in Ink4c expression. We conclude that the ability of fetal HSCs to execute symmetric self-renewal divisions more efficiently than adult HSCs in vivo may be dependent on specific developmentally regulated signals that act downstream of the c-kit kinase.


Asunto(s)
Células Madre Fetales/metabolismo , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Factor de Células Madre/metabolismo , Animales , Proliferación Celular , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Madre Fetales/citología , Células Madre Hematopoyéticas/citología , Homocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Proteínas Proto-Oncogénicas c-kit/biosíntesis , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA