Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Alzheimers Res Ther ; 16(1): 66, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38539243

RESUMEN

BACKGROUND: Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations. METHODS: Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data. RESULTS: We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8 ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43 ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p = 0.007) with a trend in non-carriers (p = 0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers. CONCLUSIONS: These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.


Asunto(s)
Demencia Frontotemporal , Masculino , Humanos , Femenino , Progranulinas/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Virulencia , Mutación/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
2.
Front Mol Neurosci ; 17: 1334862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318533

RESUMEN

Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.

3.
Neuron ; 111(24): 3970-3987.e8, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38086376

RESUMEN

Peripheral nerves regenerate successfully; however, clinical outcome after injury is poor. We demonstrated that low-dose ionizing radiation (LDIR) promoted axon regeneration and function recovery after peripheral nerve injury (PNI). Genome-wide CpG methylation profiling identified LDIR-induced hypermethylation of the Fmn2 promoter, exhibiting injury-induced Fmn2 downregulation in dorsal root ganglia (DRGs). Constitutive knockout or neuronal Fmn2 knockdown accelerated nerve repair and function recovery. Mechanistically, increased microtubule dynamics at growth cones was observed in time-lapse imaging of Fmn2-deficient DRG neurons. Increased HDAC5 phosphorylation and rapid tubulin deacetylation were found in regenerating axons of neuronal Fmn2-knockdown mice after injury. Growth-promoting effect of neuronal Fmn2 knockdown was eliminated by pharmaceutical blockade of HDAC5 or neuronal Hdac5 knockdown, suggesting that Fmn2deletion promotes axon regeneration via microtubule post-translational modification. In silico screening of FDA-approved drugs identified metaxalone, administered either immediately or 24-h post-injury, accelerating function recovery. This work uncovers a novel axon regeneration function of Fmn2 and a small-molecule strategy for PNI.


Asunto(s)
Axones , Traumatismos de los Nervios Periféricos , Animales , Ratones , Axones/fisiología , Forminas , Ganglios Espinales , Estudio de Asociación del Genoma Completo , Microtúbulos , Regeneración Nerviosa/fisiología
4.
Nat Commun ; 14(1): 7300, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37949852

RESUMEN

Anterior Uveitis (AU) is the inflammation of the anterior part of the eye, the iris and ciliary body and is strongly associated with HLA-B*27. We report AU exome sequencing results from eight independent cohorts consisting of 3,850 cases and 916,549 controls. We identify common genome-wide significant loci in HLA-B (OR = 3.37, p = 1.03e-196) and ERAP1 (OR = 0.86, p = 1.1e-08), and find IPMK (OR = 9.4, p = 4.42e-09) and IDO2 (OR = 3.61, p = 6.16e-08) as genome-wide significant genes based on the burden of rare coding variants. Dividing the cohort into HLA-B*27 positive and negative individuals, we find ERAP1 haplotype is strongly protective only for B*27-positive AU (OR = 0.73, p = 5.2e-10). Investigation of B*27-negative AU identifies a common signal near HLA-DPB1 (rs3117230, OR = 1.26, p = 2.7e-08), risk genes IPMK and IDO2, and several additional candidate risk genes, including ADGFR5, STXBP2, and ACHE. Taken together, we decipher the genetics underlying B*27-positive and -negative AU and identify rare and common genetic signals for both subtypes of disease.


Asunto(s)
Uveítis Anterior , Humanos , Uveítis Anterior/genética , Inflamación/genética , Haplotipos , Genes MHC Clase I , Antígenos HLA-B/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Aminopeptidasas/genética , Antígenos de Histocompatibilidad Menor
5.
Cells ; 12(20)2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37887329

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that presents a largely unknown etiopathology. The presence of reactive astrocytes in MS lesions has been described for a long time; however, the role that these cells play in the pathophysiology of MS is still not fully understood. Recently, we used an MS animal model to perform high-throughput sequencing of astrocytes' transcriptome during disease progression. Our data show that astrocytes isolated from the cerebellum (a brain region typically affected in MS) showed a strong alteration in the genes that encode for proteins related to several metabolic pathways. Specifically, we found a significant increase in glycogen degradation, glycolytic, and TCA cycle enzymes. Together with these alterations, we detected an upregulation of genes that characterize "astrocyte reactivity". Additionally, at each disease time point we also reconstructed the morphology of cerebellum astrocytes in non-induced controls and in EAE animals, near lesion regions and in the normal-appearing white mater (NAWM). We found that near lesions, astrocytes presented increased length and complexity compared to control astrocytes, while no significant alterations were observed in the NAWM. How these metabolic alterations are linked with disease progression is yet to be uncovered. Herein, we bring to the literature the hypothesis of performing metabolic reprogramming as a novel therapeutic approach in MS.


Asunto(s)
Astrocitos , Esclerosis Múltiple , Animales , Astrocitos/metabolismo , Esclerosis Múltiple/patología , Encéfalo/metabolismo , Modelos Animales , Progresión de la Enfermedad
6.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37506203

RESUMEN

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Asunto(s)
Axones , Regeneración Nerviosa , Neuronas , Traumatismos de los Nervios Periféricos , Adulto , Humanos , Axones/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Interneuronas/metabolismo , Regeneración Nerviosa/genética , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo
7.
Nat Genet ; 55(7): 1138-1148, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308787

RESUMEN

Human genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the ß2 subunit of the α4ß2 nicotine acetylcholine receptor. Rare predicted loss-of-function and likely deleterious missense variants in CHRNB2 in aggregate were associated with a 35% decreased odds for smoking heavily (odds ratio (OR) = 0.65, confidence interval (CI) = 0.56-0.76, P = 1.9 × 10-8). An independent common variant association in the protective direction ( rs2072659 ; OR = 0.96; CI = 0.94-0.98; P = 5.3 × 10-6) was also evident, suggesting an allelic series. Our findings in humans align with decades-old experimental observations in mice that ß2 loss abolishes nicotine-mediated neuronal responses and attenuates nicotine self-administration. Our genetic discovery will inspire future drug designs targeting CHRNB2 in the brain for the treatment of nicotine addiction.


Asunto(s)
Nicotina , Tabaquismo , Humanos , Animales , Ratones , Fumar/genética , Tabaquismo/genética , Fenotipo , Oportunidad Relativa
8.
Ophthalmologica ; 246(1): 58-67, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843038

RESUMEN

INTRODUCTION: The aim of this study was to explore the early efficacy and safety of treatment with intravitreal injections (IVIs) of brolucizumab in patients presenting with neovascular age-related macular degeneration (nAMD) in a real-world setting. METHODS: This retrospective study included 194 eyes of 180 patients with nAMD treated with standard 6-mg IVIs of brolucizumab in our clinic between March 11, 2021, and June 15, 2022. Both treatment-naive (33 eyes) and switch therapy patients (161 eyes) were included in the study. Best corrected visual acuity (BCVA), central subfield thickness (CST), retinal fluid distribution (classified as intraretinal, subretinal, under the pigmented epithelium), treatment intervals, and adverse event rates were collected for analysis. RESULTS: Average follow-up time was 37.2 ± 16.6 weeks. Mean baseline BCVAs were 38.1 ± 4.5 and 41.9 ± 6.7 letters in the treatment-naive and switch therapy groups, with a final gain of 16.0 ± 4.9 (p < 0.0001) and 10.7 ± 5.9 (p < 0.0001) letters in the two groups, respectively. Throughout the study period, CST significantly decreased in both treatment naïve (from 352.0 ± 129.4 to 284.2 ± 93.8 µm; p = 0.0015) and switch therapy (from 369.9 ± 140.5 to 307.4 ± 123.5 µm; p < 0.0001). Significant fluid control rates were achieved at the end of the study period (45% and 27% eyes were completely free of fluid in naïve and switch groups, respectively). Five eyes (2.6%) developed adverse events with different grades of intraocular inflammation and visual outcomes. CONCLUSION: Brolucizumab IVI showed very good anatomical and functional outcomes in both naive and switch patients in this real-world experience. Nevertheless, even showing a favorable risk/benefit profile, clinicians and patients should be aware of the possibility of a small rate of severe complications.


Asunto(s)
Inhibidores de la Angiogénesis , Degeneración Macular Húmeda , Humanos , Estudios Retrospectivos , Factor A de Crecimiento Endotelial Vascular , Receptores de Factores de Crecimiento Endotelial Vascular/uso terapéutico , Agudeza Visual , Degeneración Macular Húmeda/diagnóstico , Degeneración Macular Húmeda/tratamiento farmacológico , Inyecciones Intravítreas , Proteínas Recombinantes de Fusión/uso terapéutico , Tomografía de Coherencia Óptica
9.
Cell Rep ; 41(3): 111511, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36261010

RESUMEN

Glioblastoma (GBM) is characterized by extensive microvascular hyperproliferation. In addition to supplying blood to the tumor, GBM vessels also provide trophic support to glioma cells and serve as conduits for migration into the surrounding brain, promoting recurrence. Here, we enrich CD31-expressing glioma vascular cells (GVCs) and A2B5-expressing glioma tumor cells (GTCs) from primary GBM and use RNA sequencing to create a comprehensive molecular interaction map of the secreted and extracellular factors elaborated by GVCs that can interact with receptors and membrane molecules on GTCs. To validate our findings, we utilize functional assays, including a hydrogel-based migration assay and in vivo mouse models to demonstrate that one identified factor, the little-studied integrin binding sialoprotein (IBSP), enhances tumor growth and promotes the migration of GTCs along the vasculature. This perivascular niche interactome will serve as a resource to the research community in defining the potential functions of the GBM vasculature.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Ratones , Glioblastoma/patología , Sialoproteína de Unión a Integrina/metabolismo , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/metabolismo , Glioma/patología , Movimiento Celular , Hidrogeles
10.
Sci Rep ; 12(1): 17446, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261683

RESUMEN

Adult central nervous system (CNS) axons fail to regenerate after injury, and master regulators of the regenerative program remain to be identified. We analyzed the transcriptomes of retinal ganglion cells (RGCs) at 1 and 5 days after optic nerve injury with and without a cocktail of strongly pro-regenerative factors to discover genes that regulate survival and regeneration. We used advanced bioinformatic analysis to identify the top transcriptional regulators of upstream genes and cross-referenced these with the regulators upstream of genes differentially expressed between embryonic RGCs that exhibit robust axon growth vs. postnatal RGCs where this potential has been lost. We established the transcriptional activator Elk-1 as the top regulator of RGC gene expression associated with axon outgrowth in both models. We demonstrate that Elk-1 is necessary and sufficient to promote RGC neuroprotection and regeneration in vivo, and is enhanced by manipulating specific phosphorylation sites. Finally, we co-manipulated Elk-1, PTEN, and REST, another transcription factor discovered in our analysis, and found Elk-1 to be downstream of PTEN and inhibited by REST in the survival and axon regenerative pathway in RGCs. These results uncover the basic mechanisms of regulation of survival and axon growth and reveal a novel, potent therapeutic strategy to promote neuroprotection and regeneration in the adult CNS.


Asunto(s)
Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Humanos , Células Ganglionares de la Retina/metabolismo , Axones/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Factores de Transcripción/metabolismo
11.
NPJ Regen Med ; 7(1): 50, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182946

RESUMEN

Adult mammalian injured axons regenerate over short-distance in the peripheral nervous system (PNS) while the axons in the central nervous system (CNS) are unable to regrow after injury. Here, we demonstrated that Lycium barbarum polysaccharides (LBP), purified from Wolfberry, accelerated long-distance axon regeneration after severe peripheral nerve injury (PNI) and optic nerve crush (ONC). LBP not only promoted intrinsic growth capacity of injured neurons and function recovery after severe PNI, but also induced robust retinal ganglion cell (RGC) survival and axon regeneration after ONC. By using LBP gene expression profile signatures to query a Connectivity map database, we identified a Food and Drug Administration (FDA)-approved small-molecule glycopyrrolate, which promoted PNS axon regeneration, RGC survival and sustained CNS axon regeneration, increased neural firing in the superior colliculus, and enhanced visual target re-innervations by regenerating RGC axons leading to a partial restoration of visual function after ONC. Our study provides insights into repurposing of FDA-approved small molecule for nerve repair and function recovery.

12.
Science ; 377(6608): eabi8654, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35981026

RESUMEN

Predicting the function of noncoding variation is a major challenge in modern genetics. In this study, we used massively parallel reporter assays to screen 5706 variants identified from genome-wide association studies for both Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), identifying 320 functional regulatory variants (frVars) across 27 loci, including the complex 17q21.31 region. We identified and validated multiple risk loci using CRISPR interference or excision, including complement 4 (C4A) and APOC1 in AD and PLEKHM1 and KANSL1 in PSP. Functional variants disrupt transcription factor binding sites converging on enhancers with cell type-specific activity in PSP and AD, implicating a neuronal SP1-driven regulatory network in PSP pathogenesis. These analyses suggest that noncoding genetic risk is driven by common genetic variants through their aggregate activity on specific transcriptional programs.


Asunto(s)
Enfermedad de Alzheimer , Cromosomas Humanos Par 17 , Redes Reguladoras de Genes , Variación Genética , Regiones no Traducidas , Enfermedad de Alzheimer/genética , Cromosomas Humanos Par 17/genética , Genes Reporteros , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Factores de Riesgo , Parálisis Supranuclear Progresiva/genética , Regiones no Traducidas/genética
13.
Commun Biol ; 5(1): 540, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35661827

RESUMEN

To better understand the genetics of hearing loss, we performed a genome-wide association meta-analysis with 125,749 cases and 469,497 controls across five cohorts. We identified 53/c loci affecting hearing loss risk, including common coding variants in COL9A3 and TMPRSS3. Through exome sequencing of 108,415 cases and 329,581 controls, we observed rare coding associations with 11 Mendelian hearing loss genes, including additive effects in known hearing loss genes GJB2 (Gly12fs; odds ratio [OR] = 1.21, P = 4.2 × 10-11) and SLC26A5 (gene burden; OR = 1.96, P = 2.8 × 10-17). We also identified hearing loss associations with rare coding variants in FSCN2 (OR = 1.14, P = 1.9 × 10-15) and KLHDC7B (OR = 2.14, P = 5.2 × 10-30). Our results suggest a shared etiology between Mendelian and common hearing loss in adults. This work illustrates the potential of large-scale exome sequencing to elucidate the genetic architecture of common disorders where both common and rare variation contribute to risk.


Asunto(s)
Estudio de Asociación del Genoma Completo , Pérdida Auditiva , Exoma/genética , Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Pérdida Auditiva/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Serina Endopeptidasas/genética , Secuenciación del Exoma
14.
Neuron ; 110(7): 1173-1192.e7, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35114102

RESUMEN

In Huntington's disease (HD), the uninterrupted CAG repeat length, but not the polyglutamine length, predicts disease onset. However, the underlying pathobiology remains unclear. Here, we developed bacterial artificial chromosome (BAC) transgenic mice expressing human mutant huntingtin (mHTT) with uninterrupted, and somatically unstable, CAG repeats that exhibit progressive disease-related phenotypes. Unlike prior mHTT transgenic models with stable, CAA-interrupted, polyglutamine-encoding repeats, BAC-CAG mice show robust striatum-selective nuclear inclusions and transcriptional dysregulation resembling those in murine huntingtin knockin models and HD patients. Importantly, the striatal transcriptionopathy in HD models is significantly correlated with their uninterrupted CAG repeat length but not polyglutamine length. Finally, among the pathogenic entities originating from mHTT genomic transgenes and only present or enriched in the uninterrupted CAG repeat model, somatic CAG repeat instability and nuclear mHTT aggregation are best correlated with early-onset striatum-selective molecular pathogenesis and locomotor and sleep deficits, while repeat RNA-associated pathologies and repeat-associated non-AUG (RAN) translation may play less selective or late pathogenic roles, respectively.


Asunto(s)
Enfermedad de Huntington , Proteínas del Tejido Nervioso , Animales , Cromosomas Artificiales Bacterianos/genética , Cromosomas Artificiales Bacterianos/metabolismo , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Expansión de Repetición de Trinucleótido/genética
15.
Alzheimers Dement ; 18(12): 2627-2636, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35226409

RESUMEN

INTRODUCTION: Use of online registries to efficiently identify older adults with cognitive decline and Alzheimer's disease (AD) is an approach with growing evidence for feasibility and validity. Linked biomarker and registry data can facilitate AD clinical research. METHODS: We collected blood for plasma biomarker and genetic analysis from older adult Brain Health Registry (BHR) participants, evaluated feasibility, and estimated associations between demographic variables and study participation. RESULTS: Of 7150 participants invited to the study, 864 (12%) enrolled and 629 (73%) completed remote blood draws. Participants reported high study acceptability. Those from underrepresented ethnocultural and educational groups were less likely to participate. DISCUSSION: This study demonstrates the challenges of remote blood collection from a large representative sample of older adults. Remote blood collection from > 600 participants within a short timeframe demonstrates the feasibility of our approach, which can be expanded for efficient collection of plasma AD biomarker and genetic data.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Encéfalo , Biomarcadores , Disfunción Cognitiva/genética , Disfunción Cognitiva/psicología , Sistema de Registros
16.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35063084

RESUMEN

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Asunto(s)
Mitocondrias/metabolismo , Degeneración Nerviosa/metabolismo , Mapas de Interacción de Proteínas , Sinapsis/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Aminoácidos/metabolismo , Biotinilación , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Metabolismo Energético , Demencia Frontotemporal/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Índice de Severidad de la Enfermedad , Fracciones Subcelulares/metabolismo , Tauopatías/genética , Proteínas tau/química
17.
J Neurosci Res ; 100(1): 19-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830380

RESUMEN

The actions of endogenous opioids and nociceptin/orphanin FQ are mediated by four homologous G protein-coupled receptors that constitute the opioid receptor family. However, little is known about opioid systems in cyclostomes (living jawless fish) and how opioid systems might have evolved from invertebrates. Here, we leveraged de novo transcriptome and low-coverage whole-genome assembly in the Pacific hagfish (Eptatretus stoutii) to identify and characterize the first full-length coding sequence for a functional opioid receptor in a cyclostome. Additionally, we define two novel endogenous opioid precursors in this species that predict several novel opioid peptides. Bioinformatic analysis shows no closely related opioid receptor genes in invertebrates with regard either to the genomic organization or to conserved opioid receptor-specific sequences that are common in all vertebrates. Furthermore, no proteins analogous to vertebrate opioid precursors could be identified by genomic searches despite previous claims of protein or RNA-derived sequences in several invertebrate species. The presence of an expressed orthologous receptor and opioid precursors in the Pacific hagfish confirms that a functional opioid system was likely present in the common ancestor of all extant vertebrates some 550 million years ago, earlier than all previous authenticated accounts. We discuss the premise that the cyclostome and vertebrate opioid systems evolved from invertebrate systems concerned with antimicrobial defense and speculate that the high concentrations of opioid precursors in tissues such as the testes, gut, and activated immune cells are key remnants of this evolutionary role.


Asunto(s)
Anguila Babosa , Analgésicos Opioides , Animales , Evolución Biológica , Evolución Molecular , Anguila Babosa/genética , Péptidos Opioides , Filogenia
18.
Diabetologia ; 65(1): 173-187, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34554282

RESUMEN

AIMS/HYPOTHESIS: Type 2 diabetes is characterised by islet amyloid and toxic oligomers of islet amyloid polypeptide (IAPP). We posed the questions, (1) does IAPP toxicity induce an islet response comparable to that in humans with type 2 diabetes, and if so, (2) what are the key transcriptional drivers of this response? METHODS: The islet transcriptome was evaluated in five groups of mice: beta cell specific transgenic for (1) human IAPP, (2) rodent IAPP, (3) human calpastatin, (4) human calpastatin and human IAPP, and (5) wild-type mice. RNA sequencing data was analysed by differential expression analysis and gene co-expression network analysis to establish the islet response to adaptation to an increased beta cell workload of soluble rodent IAPP, the islet response to increased expression of oligomeric human IAPP, and the extent to which the latter was rescued by suppression of calpain hyperactivation by calpastatin. Rank-rank hypergeometric overlap analysis was used to compare the transcriptome of islets from human or rodent IAPP transgenic mice vs humans with prediabetes or type 2 diabetes. RESULTS: The islet transcriptomes in humans with prediabetes and type 2 diabetes are remarkably similar. Beta cell overexpression of soluble rodent or oligomer-prone human IAPP induced changes in islet transcriptome present in prediabetes and type 2 diabetes, including decreased expression of genes that confer beta cell identity. Increased expression of human IAPP, but not rodent IAPP, induced islet inflammation present in prediabetes and type 2 diabetes in humans. Key mediators of the injury responses in islets transgenic for human IAPP or those from individuals with type 2 diabetes include STAT3, NF-κB, ESR1 and CTNNB1 by transcription factor analysis and COL3A1, NID1 and ZNF800 by gene regulatory network analysis. CONCLUSIONS/INTERPRETATION: Beta cell injury mediated by IAPP is a plausible mechanism to contribute to islet inflammation and dedifferentiation in type 2 diabetes. Inhibition of IAPP toxicity is a potential therapeutic target in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Amiloide/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos , Transcriptoma/genética
19.
Brain ; 145(3): 1069-1078, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34919645

RESUMEN

The TDP-43 type C pathological form of frontotemporal lobar degeneration is characterized by the presence of immunoreactive TDP-43 short and long dystrophic neurites, neuronal cytoplasmic inclusions, neuronal loss and gliosis and the absence of neuronal intranuclear inclusions. Frontotemporal lobar degeneration-TDP-type C cases are commonly associated with the semantic variant of primary progressive aphasia or behavioural variant frontotemporal dementia. Here, we provide detailed characterization of regional distributions of pathological TDP-43 and neuronal loss and gliosis in cortical and subcortical regions in 10 TDP-type C cases and investigate the relationship between inclusions and neuronal loss and gliosis. Specimens were obtained from the first 10 TDP-type C cases accessioned from the Northwestern Alzheimer's Disease Research Center (semantic variant of primary progressive aphasia, n = 7; behavioural variant frontotemporal dementia, n = 3). A total of 42 cortical (majority bilateral) and subcortical regions were immunostained with a phosphorylated TDP-43 antibody and/or stained with haematoxylin-eosin. Regions were evaluated for atrophy, and for long dystrophic neurites, short dystrophic neurites, neuronal cytoplasmic inclusions, and neuronal loss and gliosis using a semiquantitative 5-point scale. We calculated a 'neuron-to-inclusion' score (TDP-type C mean score - neuronal loss and gliosis mean score) for each region per case to assess the relationship between TDP-type C inclusions and neuronal loss and gliosis. Primary progressive aphasia cases demonstrated leftward asymmetry of cortical atrophy consistent with the aphasic phenotype. We also observed abundant inclusions and neurodegeneration in both cortical and subcortical regions, with certain subcortical regions emerging as particularly vulnerable to dystrophic neurites (e.g. amygdala, caudate and putamen). Interestingly, linear mixed models showed that regions with lowest TDP-type C pathology had high neuronal dropout, and conversely, regions with abundant pathology displayed relatively preserved neuronal densities (P < 0.05). This inverse relationship between the extent of TDP-positive inclusions and neuronal loss may reflect a process whereby inclusions disappear as their associated neurons are lost. Together, these findings offer insight into the putative substrates of neurodegeneration in unique dementia syndromes.


Asunto(s)
Afasia Progresiva Primaria , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Malformaciones del Sistema Nervioso , Afasia Progresiva Primaria/patología , Atrofia , Autopsia , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/patología , Gliosis , Humanos
20.
Vet Comp Oncol ; 20(2): 404-415, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34792828

RESUMEN

Standardized veterinary neuroimaging response assessment methods for brain tumours are lacking. Consequently, a response assessment in veterinary neuro-oncology (RAVNO) system which uses the sum product of orthogonal lesion diameters on 1-image section with the largest tumour area, has recently been proposed. In this retrospective study, 22 pre-treatment magnetic resonance imaging (MRI) studies from 18 dogs and four cats with suspected intracranial neoplasia were compared by a single observer to 32 post-treatment MRIs using the RAVNO system and two volumetric methods based on tumour margin or area delineation with HOROS and 3D Slicer software, respectively. Intra-observer variability was low, with no statistically significant differences in agreement index between methods (mean AI ± SD, 0.91 ± 0.06 for RAVNO; 0.86 ± 0.08 for HOROS; and 0.91 ± 0.05 for 3D slicer), indicating good reproducibility. Response assessments consisting of complete or partial responses, and stable or progressive disease, agreed in 23 out of 32 (72%) MRI evaluations using the three methods. The RAVNO system failed to identify changes in mass burden detected with volumetric methods in six cases. 3D Slicer differed from the other two methods in three cases involving cysts or necrotic tissue as it allowed for more accurate exclusion of these structures. The volumetric response assessment methods were more precise in determining changes in absolute tumour burden than RAVNO but were more time-consuming to use. Based on observed agreement between methods, low intra-observer variability and decreased time constraint, RAVNO might be a suitable response assessment method for the clinical setting.


Asunto(s)
Neoplasias Encefálicas , Enfermedades de los Gatos/diagnóstico por imagen , Enfermedades de los Perros , Imagen por Resonancia Magnética , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/veterinaria , Gatos , Enfermedades de los Perros/diagnóstico por imagen , Perros , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/veterinaria , Neuroimagen/veterinaria , Reproducibilidad de los Resultados , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...