Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 71: 101703, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36906067

RESUMEN

OBJECTIVE: Body weight change and obesity follow the variance of excess energy input balanced against tightly controlled EE (energy expenditure). Since insulin resistance can reduce energy storage, we investigated whether genetic disruption of hepatic insulin signaling reduced adipose mass with increased EE. METHODS: Insulin signaling was disrupted by genetic inactivation of Irs1 (Insulin receptor substrate 1) and Irs2 in hepatocytes of LDKO mice (Irs1L/L·Irs2L/L·CreAlb), creating a state of complete hepatic insulin resistance. We inactivated FoxO1 or the FoxO1-regulated hepatokine Fst (Follistatin) in the liver of LDKO mice by intercrossing LDKO mice with FoxO1L/L or FstL/L mice. We used DEXA (dual-energy X-ray absorptiometry) to assess total lean mass, fat mass and fat percentage, and metabolic cages to measure EE (energy expenditure) and estimate basal metabolic rate (BMR). High-fat diet was used to induce obesity. RESULTS: Hepatic disruption of Irs1 and Irs2 (LDKO mice) attenuated HFD (high-fat diet)-induced obesity and increased whole-body EE in a FoxO1-dependent manner. Hepatic disruption of the FoxO1-regulated hepatokine Fst normalized EE in LDKO mice and restored adipose mass during HFD consumption; moreover, hepatic Fst disruption alone increased fat mass accumulation, whereas hepatic overexpression of Fst reduced HFD-induced obesity. Excess circulating Fst in overexpressing mice neutralized Mstn (Myostatin), activating mTORC1-promoted pathways of nutrient uptake and EE in skeletal muscle. Similar to Fst overexpression, direct activation of muscle mTORC1 also reduced adipose mass. CONCLUSIONS: Thus, complete hepatic insulin resistance in LDKO mice fed a HFD revealed Fst-mediated communication between the liver and muscle, which might go unnoticed during ordinary hepatic insulin resistance as a mechanism to increase muscle EE and constrain obesity.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/fisiología , Metabolismo Basal , Folistatina/metabolismo , Obesidad/metabolismo , Hígado/metabolismo , Insulina/metabolismo , Dieta Alta en Grasa/efectos adversos
3.
Elife ; 102021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622775

RESUMEN

The elucidation of the mechanisms whereby the liver maintains glucose homeostasis is crucial for the understanding of physiological and pathological states. Here, we show a novel role of hepatic transcriptional co-activator with PDZ-binding motif (TAZ) in the inhibition of glucocorticoid receptor (GR). TAZ is abundantly expressed in pericentral hepatocytes and its expression is markedly reduced by fasting. TAZ interacts via its WW domain with the ligand-binding domain of GR to limit the binding of GR to the GR response element in gluconeogenic gene promoters. Therefore, liver-specific TAZ knockout mice show increases in glucose production and blood glucose concentration. Conversely, the overexpression of TAZ in mouse liver reduces the binding of GR to gluconeogenic gene promoters and glucose production. Thus, our findings demonstrate that hepatic TAZ inhibits GR transactivation of gluconeogenic genes and coordinates gluconeogenesis in response to physiological fasting and feeding.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Gluconeogénesis/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Receptores de Glucocorticoides/fisiología , Animales , Glucemia , Homeostasis , Ratones Noqueados
4.
Cell Rep ; 34(12): 108893, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33761350

RESUMEN

Fgf21 (fibroblast growth factor 21) is a regulatory hepatokine that, in pharmacologic form, powerfully promotes weight loss and glucose homeostasis. Although "Fgf21 resistance" is inferred from higher plasma Fgf21 levels in insulin-resistant mice and humans, diminished Fgf21 function is understood primarily via Fgf21 knockout mice. By contrast, we show that modestly reduced Fgf21-owing to cell-autonomous suppression by hepatic FoxO1-contributes to dysregulated metabolism in LDKO mice (Irs1L/L⋅Irs2L/L⋅CreAlb), a model of severe hepatic insulin resistance caused by deletion of hepatic Irs1 (insulin receptor substrate 1) and Irs2. Knockout of hepatic Foxo1 in LDKO mice or direct restoration of Fgf21 by adenoviral infection restored glucose utilization by BAT (brown adipose tissue) and skeletal muscle, normalized thermogenic gene expression in LDKO BAT, and corrected acute cold intolerance of LDKO mice. These studies highlight the Fgf21-dependent plasticity and importance of BAT function to metabolic health during hepatic insulin resistance.


Asunto(s)
Adaptación Fisiológica , Frío , Factores de Crecimiento de Fibroblastos/metabolismo , Proteína Forkhead Box O1/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Hígado/metabolismo , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal , Dieta Alta en Grasa , Regulación de la Expresión Génica , Homeostasis , Proteínas Sustrato del Receptor de Insulina/metabolismo , Metabolismo de los Lípidos , Ratones Noqueados , Especificidad de Órganos , Oxidación-Reducción , Termogénesis/genética
5.
Sci Rep ; 9(1): 12809, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488870

RESUMEN

Celastrol is a leptin-sensitizing agent with profound anti-obesity effects in diet-induced obese (DIO) mice. However, the genes and pathways that mediate celastrol-induced leptin sensitization have not been fully understood. By comparing the hypothalamic transcriptomes of celastrol and vehicle-treated DIO mice, we identified lipocalin-2 (Lcn2) as the gene most strongly upregulated by celastrol. LCN2 was previously suggested as an anorexigenic and anti-obesity agent. Celastrol increased LCN2 protein levels in hypothalamus, liver, fat, muscle, and bone marrow, as well as in the plasma. However, genetic deficiency of LCN2 altered neither the development of diet-induced obesity, nor the ability of celastrol to promote weight loss and improve obesity-associated dyshomeostasis. We conclude that LCN2 is dispensable for both high fat diet-induced obesity and its therapeutic reduction by celastrol.


Asunto(s)
Fármacos Antiobesidad/farmacología , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Lipocalina 2/fisiología , Triterpenos/farmacología , Pérdida de Peso/efectos de los fármacos , Animales , Femenino , Expresión Génica/efectos de los fármacos , Lipocalina 2/deficiencia , Lipocalina 2/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Triterpenos Pentacíclicos
6.
Nat Med ; 25(4): 575-582, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833749

RESUMEN

Celastrol, a pentacyclic triterpene, is the most potent antiobesity agent that has been reported thus far1. The mechanism of celastrol's leptin-sensitizing and antiobesity effects has not yet been elucidated. In this study, we identified interleukin-1 receptor 1 (IL1R1) as a mediator of celastrol's action by using temporally resolved analysis of the hypothalamic transcriptome in celastrol-treated DIO, lean, and db/db mice. We demonstrate that IL1R1-deficient mice are completely resistant to the effects of celastrol in leptin sensitization and treatment of obesity, diabetes, and nonalcoholic steatohepatitis. Thus, we conclude that IL1R1 is a gatekeeper for celastrol's metabolic actions.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Leptina/farmacología , Obesidad/tratamiento farmacológico , Receptores Tipo I de Interleucina-1/metabolismo , Triterpenos/uso terapéutico , Animales , Fármacos Antiobesidad/farmacología , Dieta , Células HEK293 , Humanos , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Triterpenos Pentacíclicos , Triterpenos/farmacología
7.
Nat Med ; 24(10): 1628, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30111893

RESUMEN

In the version of this article originally published, the y axis labels in Fig. 4b,d were incorrect. In Fig. 4b, the unit on the label was (ng mg-1). This should have been (ng/ml). In Fig. 4d, the y axis label was Serum Fst (ng ml-1). It should have been Serum insulin (ng/ml). The errors have been corrected in the HTML and PDF versions of this article.

8.
Nat Med ; 24(7): 1058-1069, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29867232

RESUMEN

Unsuppressed hepatic glucose production (HGP) contributes substantially to glucose intolerance and diabetes, which can be modeled by the genetic inactivation of hepatic insulin receptor substrate 1 (Irs1) and Irs2 (LDKO mice). We previously showed that glucose intolerance in LDKO mice is resolved by hepatic inactivation of the transcription factor FoxO1 (that is, LTKO mice)-even though the liver remains insensitive to insulin. Here, we report that insulin sensitivity in the white adipose tissue of LDKO mice is also impaired but is restored in LTKO mice in conjunction with normal suppression of HGP by insulin. To establish the mechanism by which white adipose tissue insulin signaling and HGP was regulated by hepatic FoxO1, we identified putative hepatokines-including excess follistatin (Fst)-that were dysregulated in LDKO mice but normalized in LTKO mice. Knockdown of hepatic Fst in the LDKO mouse liver restored glucose tolerance, white adipose tissue insulin signaling and the suppression of HGP by insulin; however, the expression of Fst in the liver of healthy LTKO mice had the opposite effect. Of potential clinical significance, knockdown of Fst also improved glucose tolerance in high-fat-fed obese mice, and the level of serum Fst was reduced in parallel with glycated hemoglobin in obese individuals with diabetes who underwent therapeutic gastric bypass surgery. We conclude that Fst is a pathological hepatokine that might be targeted for diabetes therapy during hepatic insulin resistance.


Asunto(s)
Folistatina/metabolismo , Hiperglucemia/patología , Hígado/metabolismo , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Animales , Cirugía Bariátrica , Regulación hacia Abajo/genética , Proteína Forkhead Box O1/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/patología , Humanos , Hiperglucemia/complicaciones , Resistencia a la Insulina , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 115(16): 4228-4233, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610318

RESUMEN

Non-small-cell lung cancer (NSCLC) is a leading cause of cancer death worldwide, with 25% of cases harboring oncogenic Kirsten rat sarcoma (KRAS). Although KRAS direct binding to and activation of PI3K is required for KRAS-driven lung tumorigenesis, the contribution of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) in the context of mutant KRAS remains controversial. Here, we provide genetic evidence that lung-specific dual ablation of insulin receptor substrates 1/2 (Irs1/Irs2), which mediate insulin and IGF1 signaling, strongly suppresses tumor initiation and dramatically extends the survival of a mouse model of lung cancer with Kras activation and p53 loss. Mice with Irs1/Irs2 loss eventually succumb to tumor burden, with tumor cells displaying suppressed Akt activation and strikingly diminished intracellular levels of essential amino acids. Acute loss of IRS1/IRS2 or inhibition of IR/IGF1R in KRAS-mutant human NSCLC cells decreases the uptake and lowers the intracellular levels of amino acids, while enhancing basal autophagy and sensitivity to autophagy and proteasome inhibitors. These findings demonstrate that insulin/IGF1 signaling is required for KRAS-mutant lung cancer initiation, and identify decreased amino acid levels as a metabolic vulnerability in tumor cells with IR/IGF1R inhibition. Consequently, combinatorial targeting of IR/IGF1R with autophagy or proteasome inhibitors may represent an effective therapeutic strategy in KRAS-mutant NSCLC.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/prevención & control , Genes ras , Proteínas Sustrato del Receptor de Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Insulina/farmacología , Neoplasias Pulmonares/prevención & control , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Células A549 , Aminoácidos/metabolismo , Animales , Autofagia , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Codón de Terminación , Humanos , Proteínas Sustrato del Receptor de Insulina/deficiencia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Ratones , Proteínas de Neoplasias/fisiología , Proteolisis , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal/fisiología
11.
J Biol Chem ; 291(16): 8602-17, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26846849

RESUMEN

Constitutive activation of the mammalian target of rapamycin complex 1 and S6 kinase (mTORC1→ S6K) attenuates insulin-stimulated Akt activity in certain tumors in part through "feedback" phosphorylation of the upstream insulin receptor substrate 1 (IRS1). However, the significance of this mechanism for regulating insulin sensitivity in normal tissue remains unclear. We investigated the function of Ser-302 in mouse IRS1, the major site of its phosphorylation by S6K in vitro, through genetic knock-in of a serine-to-alanine mutation (A302). Although insulin rapidly stimulated feedback phosphorylation of Ser-302 in mouse liver and muscle, homozygous A302 mice (A/A) and their knock-in controls (S/S) exhibited similar glucose homeostasis and muscle insulin signaling. Furthermore, both A302 and control primary hepatocytes from which Irs2 was deleted showed marked inhibition of insulin-stimulated IRS1 tyrosine phosphorylation and PI3K binding after emetine treatment to raise intracellular amino acids and activate mTORC1 → S6K signaling. To specifically activate mTORC1 in mouse tissue, we deleted hepatic Tsc1 using Cre adenovirus. Although it moderately decreased IRS1/PI3K association and Akt phosphorylation in liver, Tsc1 deletion failed to cause glucose intolerance or promote hyperinsulinemia in mixed background A/A or S/S mice. Moreover, Tsc1 deletion failed to stimulate phospho-Ser-302 or other putative S6K sites within IRS1, whereas ribosomal S6 protein was constitutively phosphorylated. Following acute Tsc1 deletion from hepatocytes, Akt phosphorylation, but not IRS1/PI3K association, was rapidly restored by treatment with the mTORC1 inhibitor rapamycin. Thus, within the hepatic compartment, mTORC1 → S6K signaling regulates Akt largely through IRS-independent means with little effect upon physiologic insulin sensitivity.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/fisiología , Sustitución de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Eliminación de Gen , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Insulina/deficiencia , Proteínas Sustrato del Receptor de Insulina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación Missense , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/genética , Serina/genética , Serina/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
J Biol Chem ; 289(18): 12467-84, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24652289

RESUMEN

IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAb(Irs1)). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)(Irs1)) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302(Irs1), Ser(P)-307(Irs1), Ser(P)-318(Irs1), Ser(P)-325(Irs1), and Ser(P)-346(Irs1). Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302(Irs1), Ser(P)-307(Irs1), and four others) correlated significantly with impaired insulin-stimulated Tyr(P)(Irs1). Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)(Irs1) in CHO(IR)/IRS1 cells.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/farmacología , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Animales , Anisomicina/farmacología , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , Células CHO , Cricetinae , Cricetulus , Inhibidores Enzimáticos/farmacología , Humanos , Hipoglucemiantes/farmacología , Proteínas Sustrato del Receptor de Insulina/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Tapsigargina/farmacología , Tunicamicina/farmacología
13.
Biochem Biophys Res Commun ; 443(2): 689-93, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24333417

RESUMEN

Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance.


Asunto(s)
Glucemia/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Complejos Multiproteicos/metabolismo , Serina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteína 1 del Complejo de la Esclerosis Tuberosa
14.
Diabetes ; 61(9): 2269-79, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22688333

RESUMEN

Insulin is secreted as discrete insulin secretory bursts at ~5-min intervals into the hepatic portal vein, these pulses being attenuated early in the development of type 1 and type 2 diabetes mellitus (T2DM). Intraportal insulin infusions (pulsatile, constant, or reproducing that in T2DM) indicated that the pattern of pulsatile insulin secretion delivered via the portal vein is important for hepatic insulin action and, therefore, presumably for hepatic insulin signaling. To test this, we examined hepatic insulin signaling in rat livers exposed to the same three patterns of portal vein insulin delivery by use of sequential liver biopsies in anesthetized rats. Intraportal delivery of insulin in a constant versus pulsatile pattern led to delayed and impaired activation of hepatic insulin receptor substrate (IRS)-1 and IRS-2 signaling, impaired activation of downstream insulin signaling effector molecules AKT and Foxo1, and decreased expression of glucokinase (Gck). We further established that hepatic Gck expression is decreased in the HIP rat model of T2DM, a defect that correlated with a progressive defect of pulsatile insulin secretion. We conclude that the physiological pulsatile pattern of insulin delivery is important in hepatic insulin signaling and glycemic control. Hepatic insulin resistance in diabetes is likely in part due to impaired pulsatile insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Insulina/fisiología , Hígado/fisiología , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental , Perros , Factores de Transcripción Forkhead/metabolismo , Glucoquinasa/metabolismo , Insulina/administración & dosificación , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina , Masculino , Proteínas del Tejido Nervioso/metabolismo , Vena Porta , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
15.
Mol Cell Biol ; 31(3): 430-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21135130

RESUMEN

Coordination of skeletal muscle growth and metabolism with nutrient availability is critical for metabolic homeostasis. To establish the role of insulin-like signaling in this process, we used muscle creatine kinase (MCK)-Cre to disrupt expression of insulin receptor substrates Irs1 and Irs2 in mouse skeletal/cardiac muscle. In 2-week-old mice, skeletal muscle masses and insulin responses were slightly affected by Irs1, but not Irs2, deficiency. In contrast, the combined deficiency of Irs1 and Irs2 (MDKO mice) severely reduced skeletal muscle growth and Akt→mTOR signaling and caused death by 3 weeks of age. Autopsy of MDKO mice revealed dilated cardiomyopathy, reflecting the known requirement of insulin-like signaling for cardiac function (P. G. Laustsen et al., Mol. Cell. Biol. 27:1649-1664, 2007). Impaired growth and function of MDKO skeletal muscle were accompanied by increased Foxo-dependent atrogene expression and amino acid release. MDKO mice were resistant to injected insulin, and their isolated skeletal muscles showed decreased insulin-stimulated glucose uptake. Glucose utilization in MDKO mice and isolated skeletal muscles was shifted from oxidation to lactate production, accompanied by an elevated AMP/ATP ratio that increased AMP-activated protein kinase (AMPK)→acetyl coenzyme A carboxylase (ACC) phosphorylation and fatty acid oxidation. Thus, insulin-like signaling via Irs1/2 is essential to terminate skeletal muscle catabolic/fasting pathways in the presence of adequate nutrition.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Composición Corporal , Peso Corporal , Activación Enzimática , Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Homeostasis , Técnicas In Vitro , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/deficiencia , Ácido Láctico/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Miocardio/metabolismo , Tamaño de los Órganos , Especificidad de Órganos , Regulación hacia Arriba/genética
16.
Cell Metab ; 11(1): 84-92, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20074531

RESUMEN

Phosphorylation of the insulin receptor substrates (Irs) on serine residues-typified by Ser307 of rodent Irs1-is thought to mediate insulin resistance. To determine whether Ser307 negatively regulates Irs1 in vivo, we generated knockin mice in which Ser307 (human Ser312) was replaced with alanine (A/A). Unexpectedly, A/A mice that were fed a high-fat diet developed more severe insulin resistance than control mice, accompanied by enhanced pancreatic compensation and impaired muscle insulin signaling. Chow-fed mice whose livers lacked Irs2 but retained a single knockin allele (A/lox::LKO2) were profoundly insulin resistant (versus +/lox::LKO2 mice), and their hepatocytes showed impaired insulin signaling ex vivo. Similarly, mutant A307 Irs1 adenovirus only partially restored the response to injected insulin in mice lacking hepatic Irs1 and Irs2. Thus, contrary to the results of cell-based experiments, Ser307 in mice is a positive regulatory site that moderates the severity of insulin resistance by maintaining proximal insulin signaling.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/metabolismo , Serina/metabolismo , Sustitución de Aminoácidos , Animales , Grasas de la Dieta , Técnicas de Sustitución del Gen , Proteínas Sustrato del Receptor de Insulina/genética , Resistencia a la Insulina , Ratones , Transducción de Señal
17.
Mol Cell Biol ; 29(18): 5070-83, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19596788

RESUMEN

We used a Cre-loxP approach to generate mice with varied expression of hepatic Irs1 and Irs2 to establish the contribution of each protein to hepatic nutrient homeostasis. While nutrient-sensitive transcripts were expressed nearly normally in liver lacking Irs2 (LKO2 mice), these transcripts were significantly dysregulated in liver lacking Irs1 (LKO1 mice) or Irs1 and Irs2 together (DKO mice). Similarly, a set of key gluconeogenic and lipogenic genes was regulated nearly normally by feeding in liver retaining a single Irs1 allele without Irs2 (DKO/1 mice) but was poorly regulated in liver retaining one Irs2 allele without Irs1 (DKO/2 mice). DKO/2 mice, but not DKO/1 mice, also showed impaired glucose tolerance and insulin sensitivity-though both Irs1 and Irs2 were required to suppress hepatic glucose production during hyperinsulinemic-euglycemic clamp. In contrast, either hepatic Irs1 or Irs2 mediated suppression of HGP by intracerebroventricular insulin infusion. After 12 weeks on a high-fat diet, postprandial tyrosine phosphorylation of Irs1 increased in livers of control and LKO2 mice, whereas tyrosine phosphorylation of Irs2 decreased in control and LKO1 mice. Moreover, LKO1 mice -- but not LKO2 mice -- that were fed a high-fat diet developed postprandial hyperglycemia. We conclude that Irs1 is the principal mediator of hepatic insulin action that maintains glucose homeostasis.


Asunto(s)
Alimentos , Homeostasis , Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Transducción de Señal , Animales , Ayuno , Conducta Alimentaria , Regulación de la Expresión Génica , Glucosa/metabolismo , Hiperinsulinismo/genética , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico
19.
Cell Metab ; 8(1): 65-76, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18590693

RESUMEN

The forkhead transcription factor Foxo1 regulates expression of genes involved in stress resistance and metabolism. To assess the contribution of Foxo1 to metabolic dysregulation during hepatic insulin resistance, we disrupted Foxo1 expression in the liver of mice lacking hepatic Irs1 and Irs2 (DKO mice). DKO mice were small and developed diabetes; analysis of the DKO-liver transcriptome identified perturbed expression of growth and metabolic genes, including increased Ppargc1a and Igfbp1, and decreased glucokinase, Srebp1c, Ghr, and Igf1. Liver-specific deletion of Foxo1 in DKO mice resulted in significant normalization of the DKO-liver transcriptome and partial restoration of the response to fasting and feeding, near normal blood glucose and insulin concentrations, and normalization of body size. These results demonstrate that constitutively active Foxo1 significantly contributes to hyperglycemia during severe hepatic insulin resistance, and that the Irs1/2 --> PI3K --> Akt --> Foxo1 branch of insulin signaling is largely responsible for hepatic insulin-regulated glucose homeostasis and somatic growth.


Asunto(s)
Glándulas Endocrinas/fisiología , Alimentos , Factores de Transcripción Forkhead/metabolismo , Crecimiento , Homeostasis , Insulina/metabolismo , Hígado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Ratones , Ratones Noqueados , Fosfoproteínas/deficiencia , Transducción de Señal
20.
Mol Endocrinol ; 21(9): 2294-302, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17579213

RESUMEN

Multisite phosphorylation of Irs1 on serine and threonine residues regulates insulin signaling that can contribute to insulin resistance. We identified by mass spectrometry the phosphorylation of Ser522 in rat Irs1 (S522(Irs1)). The functional effects of this phosphorylation site were investigated in cultured cells using a sequence-specific phosphoserine antibody. Insulin stimulated the phosphorylation of S522(Irs1) in L6 myoblasts and myotubes. S522(Irs1) phosphorylation was inhibited by wortmannin, whereas PD98059, rapamycin, or glucose-starvation had no effect. Reducing Akt expression with small interfering RNA inhibited insulin-stimulated phosphorylation of S522(Irs1), suggesting the involvement of the phosphatidylinositol 3-kinase--> Akt cascade. A S522(Irs1)-->A522(Irs1) substitution increased insulin-stimulated tyrosine phosphorylation of Irs1 and signaling, whereas a S522(Irs1)-->E522(Irs1) substitution reduced insulin-stimulated Irs1 tyrosine phosphorylation. Together, these results suggest the phosphatidylinositol 3-kinase-->Akt cascade can inhibit insulin signaling through the phosphorylation of S522(Irs1).


Asunto(s)
Insulina/metabolismo , Fosfoproteínas/metabolismo , Serina/metabolismo , Transducción de Señal/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas Sustrato del Receptor de Insulina , Fosfoproteínas/genética , Fosforilación , Conejos , Serina/genética , Treonina/genética , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA