Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3299, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332131

RESUMEN

This study compares the readout-segmented echo-planar imaging (rsEPI) from the conventional single-shot EPI (ssEPI) diffusion-weighted imaging (DWI) for the discrimination of patients with clinically significant prostate cancer (csPCa) within the peripheral zone (PZ) using apparent diffusion coefficient (ADC) maps and pathology report from magnetic resonance imaging (MRI)-targeted biopsy. We queried a retrospective monocentric database of patients with targeted biopsy. csPCa patients were defined as an International Society of Urological Pathology grade group ≥ 2. Group-level analyses and diagnostic accuracy of mean ADC values (ADCmean) within the tumor volume were assessed from Kruskal-Wallis tests and receiving operating characteristic curves, respectively. Areas under the curve (AUC) and optimal cut-off values were calculated. 159 patients (105 rsEPI, 54 ssEPI; mean age ± standard deviation: 65 ± 8 years) with 3T DWI, PZ lesions and targeted biopsy were selected. Both DWI sequences showed significantly lower ADCmean values for patients with csPCa. The rsEPI sequence better discriminates patients with csPCa (AUCrsEPI = 0.84, AUCssEPI = 0.68, p < 0.05) with an optimal cut-off value of 1232 µm2/s associated with a sensitivity-specificity of 97%-63%. Our study showed that the rsEPI DWI sequence enhances the discrimination of patients with csPCa.


Asunto(s)
Imagen Eco-Planar , Neoplasias de la Próstata , Masculino , Humanos , Imagen Eco-Planar/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Imagen de Difusión por Resonancia Magnética/métodos
2.
Neuroimage ; 247: 118850, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34954027

RESUMEN

State modeling of whole-brain electroencephalography (EEG) or magnetoencephalography (MEG) allows to investigate transient, recurring neurodynamical events. Two widely-used techniques are the microstate analysis of EEG signals and hidden Markov modeling (HMM) of MEG power envelopes. Both reportedly lead to similar state lifetimes on the 100 ms timescale, suggesting a common neural basis. To investigate whether microstates and power envelope HMM states describe the same neural dynamics, we used simultaneous MEG/EEG recordings at rest and compared the spatial signature and temporal activation dynamics of microstates and power envelope HMM states obtained separately from EEG and MEG. Results showed that microstates and power envelope HMM states differ both spatially and temporally. Microstates reflect sharp events of neural synchronization, whereas power envelope HMM states disclose network-level activity with 100-200 ms lifetimes. Further, MEG microstates do not correspond to the canonical EEG microstates but are better interpreted as split HMM states. On the other hand, both MEG and EEG HMM states involve the (de)activation of similar functional networks. Microstate analysis and power envelope HMM thus appear sensitive to neural events occurring over different spatial and temporal scales. As such, they represent complementary approaches to explore the fast, sub-second scale bursting electrophysiological dynamics in spontaneous human brain activity.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Magnetoencefalografía/métodos , Adolescente , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Cadenas de Markov , Descanso
3.
Sci Rep ; 10(1): 21990, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319785

RESUMEN

Human brain activity is intrinsically organized into resting-state networks (RSNs) that transiently activate or deactivate at the sub-second timescale. Few neuroimaging studies have addressed how Alzheimer's disease (AD) affects these fast temporal brain dynamics, and how they relate to the cognitive, structural and metabolic abnormalities characterizing AD. We aimed at closing this gap by investigating both brain structure and function using magnetoencephalography (MEG) and hybrid positron emission tomography-magnetic resonance (PET/MR) in 10 healthy elders, 10 patients with subjective cognitive decline (SCD), 10 patients with amnestic mild cognitive impairment (aMCI) and 10 patients with typical Alzheimer's disease with dementia (AD). The fast activation/deactivation state dynamics of RSNs were assessed using hidden Markov modeling (HMM) of power envelope fluctuations at rest measured with MEG. Correlations were sought between temporal properties of HMM states and participants' cognitive test scores, whole hippocampal grey matter volume and regional brain glucose metabolism. The posterior default-mode network (DMN) was less often activated and for shorter durations in AD patients than matched healthy elders. No significant difference was found in patients with SCD or aMCI. The time spent by participants in the activated posterior DMN state did not correlate significantly with cognitive scores, nor with the whole hippocampal volume. However, it correlated positively with the regional glucose consumption in the right dorsolateral prefrontal cortex (DLPFC). AD patients present alterations of posterior DMN power activation dynamics at rest that identify an additional electrophysiological correlate of AD-related synaptic and neural dysfunction. The right DLPFC may play a causal role in the activation of the posterior DMN, possibly linked to the occurrence of mind wandering episodes. As such, these data might suggest a neural correlate of the decrease in mind wandering episodes reported in pathological aging.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Red Nerviosa/fisiopatología , Descanso/fisiología , Anciano , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Mapeo Encefálico , Cognición , Femenino , Humanos , Magnetoencefalografía , Masculino , Factores de Tiempo
4.
Sci Rep ; 10(1): 18986, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149179

RESUMEN

This magnetoencephalography study aimed at characterizing age-related changes in resting-state functional brain organization from mid-childhood to late adulthood. We investigated neuromagnetic brain activity at rest in 105 participants divided into three age groups: children (6-9 years), young adults (18-34 years) and healthy elders (53-78 years). The effects of age on static resting-state functional brain integration were assessed using band-limited power envelope correlation, whereas those on transient functional brain dynamics were disclosed using hidden Markov modeling of power envelope activity. Brain development from childhood to adulthood came with (1) a strengthening of functional integration within and between resting-state networks and (2) an increased temporal stability of transient (100-300 ms lifetime) and recurrent states of network activation or deactivation mainly encompassing lateral or medial associative neocortical areas. Healthy aging was characterized by decreased static resting-state functional integration and dynamic stability within the primary visual network. These results based on electrophysiological measurements free of neurovascular biases suggest that functional brain integration mainly evolves during brain development, with limited changes in healthy aging. These novel electrophysiological insights into human brain functional architecture across the lifespan pave the way for future clinical studies investigating how brain disorders affect brain development or healthy aging.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/crecimiento & desarrollo , Magnetoencefalografía/métodos , Descanso/fisiología , Adulto , Distribución por Edad , Anciano , Encéfalo/fisiología , Ondas Encefálicas , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Cadenas de Markov , Persona de Mediana Edad , Adulto Joven
5.
Neuroimage ; 210: 116556, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31972279

RESUMEN

Magnetoencephalography (MEG) has been used in conjunction with resting-state functional connectivity (rsFC) based on band-limited power envelope correlation to study the intrinsic human brain network organization into resting-state networks (RSNs). However, the limited availability of current MEG systems hampers the clinical applications of electrophysiological rsFC. Here, we directly compared well-known RSNs as well as the whole-brain rsFC connectome together with its state dynamics, obtained from simultaneously-recorded MEG and high-density scalp electroencephalography (EEG) resting-state data. We also examined the impact of head model precision on EEG rsFC estimation, by comparing results obtained with boundary and finite element head models. Results showed that most RSN topographies obtained with MEG and EEG are similar, except for the fronto-parietal network. At the connectome level, sensitivity was lower to frontal rsFC and higher to parieto-occipital rsFC with MEG compared to EEG. This was mostly due to inhomogeneity of MEG sensor locations relative to the scalp and significant MEG-EEG differences disappeared when taking relative MEG-EEG sensor locations into account. The default-mode network was the only RSN requiring advanced head modeling in EEG, in which gray and white matter are distinguished. Importantly, comparison of rsFC state dynamics evidenced a poor correspondence between MEG and scalp EEG, suggesting sensitivity to different components of transient neural functional integration. This study therefore shows that the investigation of static rsFC based on the human brain connectome can be performed with scalp EEG in a similar way than with MEG, opening the avenue to widespread clinical applications of rsFC analyses.


Asunto(s)
Corteza Cerebral/fisiología , Electroencefalografía/normas , Neuroimagen Funcional/normas , Magnetoencefalografía/normas , Red Nerviosa/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Sensibilidad y Especificidad , Adulto Joven
6.
Sci Rep ; 7(1): 13984, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-29070789

RESUMEN

Functional magnetic resonance imaging (fMRI) studies report age-related changes in resting-state functional connectivity (rsFC), suggesting altered or reorganized connectivity patterns with age. However, age-related changes in neurovascular coupling might also partially account for altered connectivity patterns. Here, we used resting-state magnetoencephalography (MEG) and a connectome approach in carefully selected healthy young adults and elders. The MEG connectome was estimated as rsFC matrices involving forty nodes from six major  resting-state networks. Source-level rsFC maps were computed in relevant frequency bands using leakage-corrected envelope correlations. Group differences were statistically assessed using non-parametric permutation tests. Our results failed to evidence significant age-related differences after correction for multiple comparisons in the α and the ß bands both for static and dynamic rsFC, suggesting that the electrophysiological connectome is maintained in healthy ageing. Further studies should compare the evolution of the human brain connectome as estimated using fMRI and MEG in same healthy young and elder adults, as well as in ageing conditions associated with cognitive decline. At present, our results are in agreement with the brain maintenance theory for successful aging as they suggest that preserved intrinsic functional brain integration contributes to preserved cognitive functioning in healthy elders.


Asunto(s)
Encéfalo/fisiología , Disfunción Cognitiva/fisiopatología , Conectoma , Fenómenos Electrofisiológicos , Magnetoencefalografía/métodos , Red Nerviosa/fisiología , Descanso/fisiología , Adulto , Anciano , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA