Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Breast Cancer Res ; 26(1): 29, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374113

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy (NAC) is the standard of care for patients with early-stage triple negative breast cancers (TNBC). However, more than half of TNBC patients do not achieve a pathological complete response (pCR) after NAC, and residual cancer burden (RCB) is associated with dismal long-term prognosis. Understanding the mechanisms underlying differential treatment outcomes is therefore critical to limit RCB and improve NAC efficiency. METHODS: Human TNBC cell lines and patient-derived organoids were used in combination with real-time metabolic assays to evaluate the effect of NAC (paclitaxel and epirubicin) on tumor cell metabolism, in particular glycolysis. Diagnostic biopsies (pre-NAC) from patients with early TNBC were analyzed by bulk RNA-sequencing to evaluate the predictive value of a glycolysis-related gene signature. RESULTS: Paclitaxel induced a consistent metabolic switch to glycolysis, correlated with a reduced mitochondrial oxidative metabolism, in TNBC cells. In pre-NAC diagnostic biopsies from TNBC patients, glycolysis was found to be upregulated in non-responders. Furthermore, glycolysis inhibition greatly improved response to NAC in TNBC organoid models. CONCLUSIONS: Our study pinpoints a metabolic adaptation to glycolysis as a mechanism driving resistance to NAC in TNBC. Our data pave the way for the use of glycolysis-related genes as predictive biomarkers for NAC response, as well as the development of inhibitors to overcome this glycolysis-driven resistance to NAC in human TNBC patients.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Terapia Neoadyuvante , Pronóstico , Resultado del Tratamiento , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
2.
EMBO Rep ; 25(3): 1469-1489, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366255

RESUMEN

Tumor acidosis is associated with increased invasiveness and drug resistance. Here, we take an unbiased approach to identify vulnerabilities of acid-exposed cancer cells by combining pH-dependent flow cytometry cell sorting from 3D colorectal tumor spheroids and transcriptomic profiling. Besides metabolic rewiring, we identify an increase in tetraploid cell frequency and DNA damage response as consistent hallmarks of acid-exposed cancer cells, supported by the activation of ATM and ATR signaling pathways. We find that regardless of the cell replication error status, both ATM and ATR inhibitors exert preferential growth inhibitory effects on acid-exposed cancer cells. The efficacy of a combination of these drugs with 5-FU is further documented in 3D spheroids as well as in patient-derived colorectal tumor organoids. These data position tumor acidosis as a revelator of the therapeutic potential of DNA repair blockers and as an attractive clinical biomarker to predict the response to a combination with chemotherapy.


Asunto(s)
Neoplasias Colorrectales , Tetraploidía , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Transducción de Señal , Daño del ADN , Reparación del ADN , Inhibidores de Proteínas Quinasas/farmacología
3.
Cancers (Basel) ; 15(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37190291

RESUMEN

xCT overexpression in cancer cells has been linked to tumor growth, metastasis and treatment resistance. Sulfasalazine (SSZ), an FDA-approved drug for the treatment of rheumatoid sarthritis, and inflammatory bowel diseases, has anticancer properties via inhibition of xCT, leading to the disruption of redox homeostasis. Since reactive oxygen species (ROS) are pivotal for the efficacy of radiotherapy (RT), elevated levels of ROS are associated with improved RT outcomes. In this study, the influence of SSZ treatment on the radiosensitivity of human colorectal cancer (CRC) cells was investigated. Our principal finding in human HCT116 and DLD-1 cells was that SSZ enhances the radiosensitivity of hypoxic CRC cells but does not alter the intrinsic radiosensitivity. The radiosensitizing effect was attributed to the depletion of glutathione and thioredoxin reductase levels. In turn, the reduction leads to excessive levels of ROS, increased DNA damage, and ferroptosis induction. Confirmation of these findings was performed in 3D models and in DLD-1 xenografts. Taken together, this study is a stepping stone for applying SSZ as a radiosensitizer in the clinic and confirms that xCT in cancer cells is a valid radiobiological target.

4.
Cancer Drug Resist ; 6(4): 709-728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239393

RESUMEN

Aim: Acquired resistance to the targeted agent cetuximab poses a significant challenge in finding effective anti-cancer treatments for head and neck squamous cell carcinoma (HNSCC). To accurately study novel combination treatments, suitable preclinical mouse models for cetuximab resistance are key yet currently limited. This study aimed to optimize an acquired cetuximab-resistant mouse model, with preservation of the innate immunity, ensuring intact antibody-dependent cellular cytotoxicity (ADCC) functionality. Methods: Cetuximab-sensitive and acquired-resistant HNSCC cell lines, generated in vitro, were subcutaneously engrafted in Rag2 knock-out (KO), BALB/c Nude and CB17 Scid mice with/without Matrigel or Geltrex. Once tumor growth was established, mice were intraperitoneally injected twice a week with cetuximab for a maximum of 3 weeks. In addition, immunohistochemistry was used to evaluate the tumor and its microenvironment. Results: Despite several adjustments in cell number, cell lines and the addition of Matrigel, Rag2 KO and BALB/C Nude mice proved to be unsuitable for xenografting our HNSCC cell lines. Durable tumor growth of resistant SC263-R cells could be induced in CB17 Scid mice. However, these cells had lost their resistance phenotype in vivo. Immunohistochemistry revealed a high infiltration of macrophages in cetuximab-treated SC263-R tumors. FaDu-S and FaDu-R cells successfully engrafted into CB17 Scid mice and maintained their sensitivity/resistance to cetuximab. Conclusion: We have established in vivo HNSCC mouse models with intact ADCC functionality for cetuximab resistance and sensitivity using the FaDu-R and FaDu-S cell lines, respectively. These models serve as valuable tools for investigating cetuximab resistance mechanisms and exploring novel drug combination strategies.

5.
Nat Cancer ; 3(12): 1464-1483, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36522548

RESUMEN

Solid tumors are generally characterized by an acidic tumor microenvironment (TME) that favors cancer progression, therapy resistance and immune evasion. By single-cell RNA-sequencing analysis in individuals with pancreatic ductal adenocarcinoma (PDAC), we reveal solute carrier family 4 member 4 (SLC4A4) as the most abundant bicarbonate transporter, predominantly expressed by epithelial ductal cells. Functionally, SLC4A4 inhibition in PDAC cancer cells mitigates the acidosis of the TME due to bicarbonate accumulation in the extracellular space and a decrease in lactate production by cancer cells as the result of reduced glycolysis. In PDAC-bearing mice, genetic or pharmacological SLC4A4 targeting improves T cell-mediated immune response and breaches macrophage-mediated immunosuppression, thus inhibiting tumor growth and metastases. In addition, Slc4a4 targeting in combination with immune checkpoint blockade is able to overcome immunotherapy resistance and prolong survival. Overall, our data propose SLC4A4 as a therapeutic target to unleash an antitumor immune response in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Simportadores de Sodio-Bicarbonato , Animales , Ratones , Bicarbonatos/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Inmunoterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Simportadores de Sodio-Bicarbonato/genética , Microambiente Tumoral , Tolerancia Inmunológica , Neoplasias Pancreáticas
7.
Cancers (Basel) ; 14(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36358872

RESUMEN

Cancer cells may stimulate glycolytic flux when O2 becomes insufficient. Increase in L-lactate release therefore appears as an escape mechanism to drugs targeting mitochondrial respiration but also represents a response that may be exploited to screen for compounds blocking either mitochondrial carriers of oxidizable substrates or the electron transport chain. Here, we developed a screening procedure based on the capacity of cancer cells to release L-lactate to gain insights on the development of mitochondrial complex I inhibitors. For this purpose, we synthesized derivatives of carboxyamidotriazole, a compound previously described as a potential OXPHOS inhibitor. Two series of derivatives were generated by cycloaddition between benzylazide and either cyanoacetamides or alkynes. A primary assay measuring L-lactate release as a compensatory mechanism upon OXPHOS inhibition led us to identify 15 hits among 28 derivatives. A secondary assay measuring O2 consumption in permeabilized cancer cells confirmed that 12 compounds among the hits exhibited reversible complex I inhibitory activity. Anticancer effects of a short list of 5 compounds identified to induce more L-lactate release than reference compound were then evaluated on cancer cells and tumor-mimicking 3D spheroids. Human and mouse cancer cell monolayers exhibiting high level of respiration in basal conditions were up to 3-fold more sensitive than less oxidative cancer cells. 3D tumor spheroids further revealed potency differences between selected compounds in terms of cytotoxicity but also radiosensitizing activity resulting from local reoxygenation. In conclusion, this study documents the feasibility to efficiently screen in 96-well plate format for mitochondrial complex I inhibitors based on the capacity of drug candidates to induce L-lactate release.

8.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36291844

RESUMEN

Augmented de novo serine synthesis activity is increasingly apparent in distinct types of cancers and has mainly sparked interest by investigation of phosphoglycerate dehydrogenase (PHGDH). Overexpression of PHGDH has been associated with higher tumor grade, shorter relapse time and decreased overall survival. It is well known that therapeutic outcomes in cancer patients can be improved by reprogramming metabolic pathways in combination with standard treatment options, for example, radiotherapy. In this study, possible metabolic changes related to radioresponse were explored upon PHGDH inhibition. Additionally, we evaluated whether PHGDH inhibition could improve radioresponse in human colorectal cancer cell lines in both aerobic and radiobiological relevant hypoxic conditions. Dysregulation of reactive oxygen species (ROS) homeostasis and dysfunction in mitochondrial energy metabolism and oxygen consumption rate were indicative of potential radiomodulatory effects. We demonstrated that PHGDH inhibition radiosensitized hypoxic human colorectal cancer cells while leaving intrinsic radiosensitivity unaffected. In a xenograft model, the first hints of additive effects between PHGDH inhibition and radiotherapy were demonstrated. In conclusion, this study is the first to show that modulation of de novo serine biosynthesis enhances radioresponse in hypoxic colorectal cancer cells, mainly mediated by increased levels of intracellular ROS.

9.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010869

RESUMEN

Pathological complete response (pCR) after neoadjuvant chemotherapy in patients with early breast cancer is correlated with better survival. Meanwhile, an expanding arsenal of post-neoadjuvant treatment strategies have proven beneficial in the absence of pCR, leading to an increased use of neoadjuvant systemic therapy in patients with early breast cancer and the search for predictive biomarkers of response. The better prediction of response to neoadjuvant chemotherapy could enable the escalation or de-escalation of neoadjuvant treatment strategies, with the ultimate goal of improving the clinical management of early breast cancer. Clinico-pathological prognostic factors are currently used to estimate the potential benefit of neoadjuvant systemic treatment but are not accurate enough to allow for personalized response prediction. Other factors have recently been proposed but are not yet implementable in daily clinical practice or remain of limited utility due to the intertumoral heterogeneity of breast cancer. In this review, we describe the current knowledge about predictive factors for response to neoadjuvant chemotherapy in breast cancer patients and highlight the future perspectives that could lead to the better prediction of response, focusing on the current biomarkers used for clinical decision making and the different gene signatures that have recently been proposed for patient stratification and the prediction of response to therapies. We also discuss the intratumoral phenotypic heterogeneity in breast cancers as well as the emerging techniques and relevant pre-clinical models that could integrate this biological factor currently limiting the reliable prediction of response to neoadjuvant systemic therapy.

10.
Int J Pharm ; 624: 122041, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35868479

RESUMEN

Targeting enzymes involved in tumor metabolism is a promising way to tackle cancer progression. The inhibition of carnitine palmitoyltransferase 1 (CPT1) by etomoxir (Eto) efficiently slows down the growth of various cancers. Unfortunately, the clinical use of this drug was abandoned because of hepatotoxic effects. We report the development of pH-sensitive peptide (pHLIP)-drug conjugate to deliver Eto selectively to cancer cells exposed to acidic microenvironmental conditions. A newly designed sequence for the pHLIP peptide, named pHLIPd, was compared with a previously published reference pHLIP peptide, named pHLIPr. We showed that the conjugate between pHLIPd and Eto has a better pH-dependent insertion and structuration than the pHLIPr-based conjugate inside POPC vesicles. We observed antiproliferative effects when applied on acid-adapted cancer cells, reaching a larger inhibitory activity than Eto alone. In conclusion, this study brings the first evidence that pHLIP-based conjugates with a CPT1 inhibitor has the potential to specifically target the tumor acidic compartment and exert anticancer effects while sparing healthy tissues.


Asunto(s)
Acidosis , Neoplasias , Carnitina O-Palmitoiltransferasa , Compuestos Epoxi , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico , Péptidos/farmacología
11.
Biochem J ; 479(12): 1317-1336, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35670459

RESUMEN

Pharmacological AMPK activation represents an attractive approach for the treatment of type 2 diabetes (T2D). AMPK activation increases skeletal muscle glucose uptake, but there is controversy as to whether AMPK activation also inhibits hepatic glucose production (HGP) and pharmacological AMPK activators can have off-target effects that contribute to their anti-diabetic properties. The main aim was to investigate the effects of 991 and other direct AMPK activators on HGP and determine whether the observed effects were AMPK-dependent. In incubated hepatocytes, 991 substantially decreased gluconeogenesis from lactate, pyruvate and glycerol, but not from other substrates. Hepatocytes from AMPKß1-/- mice had substantially reduced liver AMPK activity, yet the inhibition of glucose production by 991 persisted. Also, the glucose-lowering effect of 991 was still seen in AMPKß1-/- mice subjected to an intraperitoneal pyruvate tolerance test. The AMPK-independent mechanism by which 991 treatment decreased gluconeogenesis could be explained by inhibition of mitochondrial pyruvate uptake and inhibition of mitochondrial sn-glycerol-3-phosphate dehydrogenase-2. However, 991 and new-generation direct small-molecule AMPK activators antagonized glucagon-induced gluconeogenesis in an AMPK-dependent manner. Our studies support the notion that direct pharmacological activation of hepatic AMPK as well as inhibition of pyruvate uptake could be an option for the treatment of T2D-linked hyperglycemia.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucagón , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucagón/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Ácido Láctico/metabolismo , Hígado/metabolismo , Ratones , Ácido Pirúvico/metabolismo
12.
Metabolites ; 12(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35736489

RESUMEN

Extracellular acidification has been shown to be an important characteristic of invasive tumors, as it promotes invasion and migration but also resistance to treatments. Targeting transporters involved in the regulation of tumor pH constitutes a promising anti-tumor approach, as it would disrupt cellular pH homeostasis and negatively impact tumor growth. In this study, we evaluated the impact of syrosingopine, an inhibitor of MCT1 and MCT4, as a modulator of tumor metabolism and extracellular acidification in human breast cancer (MDA-MB-231) and pharyngeal squamous cell carcinoma (FaDu) cell models. In both models in vitro, we observed that exposure to syrosingopine led to a decrease in the extracellular acidification rate, intracellular pH, glucose consumption, lactate secretion and tumor cell proliferation with an increase in the number of late apoptotic/necrotic cells. However, in vivo experiments using the MDA-MB-231 model treated with a daily injection of syrosingopine did not reveal any significant change in extracellular pH (pHe) (as measured using CEST-MRI) or primary tumor growth. Overall, our study suggests that targeting MCT could lead to profound changes in tumor cell metabolism and proliferation, and it warrants further research to identify candidates without off-target effects.

13.
J Exp Clin Cancer Res ; 41(1): 110, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346305

RESUMEN

BACKGROUND: CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer. METHODS: After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters. RESULTS: We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues. CONCLUSION: Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers.


Asunto(s)
Neoplasias de la Mama , Receptores de Hialuranos , Factor de Crecimiento Nervioso , Receptor trkA , Animales , Neoplasias de la Mama/genética , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Ratones , Factor de Crecimiento Nervioso/farmacología , Isoformas de Proteínas , Receptor trkA/metabolismo
14.
Drug Resist Updat ; 60: 100806, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121337

RESUMEN

Squamous cell carcinoma of the head and neck (SCCHN) is among the most prevalent cancer types worldwide. Despite multimodal therapeutic approaches that include surgical resection, radiation therapy or concurrent chemoradiation, targeted therapy and immunotherapy, SCCHN is still associated with a poor prognosis for patients with locally advanced or recurrent/metastatic (R/M) diseases. Although next-generation sequencing data from thousands of SCCHN patients have provided a comprehensive landscape of the somatic genomic alterations in this disease, genomic-based precision medicine is not implemented yet in routine clinical use since no satisfactory genetic biomarker has been identified for diagnosis, patient outcome prediction and selection of tailored therapeutic options. The lack of significant improvement in SCCHN patient survival over the last decades stresses the need for reliable predictive biomarkers and new therapeutic strategies for personalized clinical management of SCCHN patients. Targeting the SCCHN-associated microenvironment or the interaction of the latter with cancer cells may represent such paradigm shift in the development of new strategies to treat SCCHN patients, as exemplified by the recent implementation of immune checkpoint inhibitors to improve clinical outcomes by increasing anti-tumor immune responses in SCCHN patients. Several clinical trials are in progress in SCCHN patients to evaluate the activity of monoclonal antibodies and small-molecule inhibitors targeting the tumor microenvironment (TME) at different treatment settings, including combinations with adjuvant surgery, radiation therapy and chemotherapy. This review describes the current knowledge about the influence of the TME on intratumoral heterogeneity and clinical relapse in human SCCHN patients. More precisely, the role of hypoxia as well as the presence of non-cancer cells (e.g. cancer-associated fibroblasts and immune cells) on therapy response of SCCHN cells is highlighted. We also discuss relevant (pre)clinical models that may help integrate the microenvironment-tumor cell interplay in translational research studies for SCCHN. Finally, this review explores potential therapeutic strategies that may exploit the crosstalk between TME and SCCHN cells in order to implement fundamental changes in the tumor treatment paradigm of patients with locally advanced or R/M SCCHN.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas/terapia , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Humanos , Inmunoterapia , Medicina de Precisión , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Microambiente Tumoral/genética
15.
Cancers (Basel) ; 14(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35158830

RESUMEN

Obesity is characterized by an excessive fat mass accumulation associated with multiple disorders, including impaired glucose homeostasis, altered adipokine levels, and hyperlipidemia. Despite clear associations between tumor progression and obesity, the effects of these disorders on tumor metabolism remain largely unknown. Thus, we studied the metabolic differences between tumors of obese and lean mice in murine models of triple-negative breast cancer (E0771 and PY8819). For this purpose, a real-time hyperpolarized 1-13C-pyruvate-to-lactate conversion was studied before and after glucose administration in fasting mice. This work was completed by U-13C glucose tracing experiments using nuclear magnetic resonance (NMR) spectroscopy, as well as mass spectrometry (MS). Ex vivo analyses included immunostainings of major lipid, glucose, and monocarboxylic acids transporters. On the one hand, we discovered that tumors of obese mice yield higher lactate/pyruvate ratios after glucose administration. On the other hand, we found that the same tumors produce higher levels of lactate and alanine from glucose than tumors from lean mice, while no differences on the expression of key transporters associated with glycolysis (i.e., GLUT1, MCT1, MCT4) have been observed. In conclusion, our data suggests that breast tumor metabolism is regulated by the host's physiological status, such as obesity and diabetes.

16.
Drug Resist Updat ; 59: 100797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34955385

RESUMEN

Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.


Asunto(s)
Neoplasias , Microambiente Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión
17.
Cancers (Basel) ; 13(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34503089

RESUMEN

(1) Background: The acidosis of the tumor micro-environment may have profound impact on cancer progression and on the efficacy of treatments. In the present study, we evaluated the impact of a treatment with UK-5099, a mitochondrial pyruvate carrier (MPC) inhibitor on tumor extracellular pH (pHe); (2) Methods: glucose consumption, lactate secretion and extracellular acidification rate (ECAR) were measured in vitro after exposure of cervix cancer SiHa cells and breast cancer 4T1 cells to UK-5099 (10 µM). Mice bearing the 4T1 tumor model were treated daily during four days with UK-5099 (3 mg/kg). The pHe was evaluated in vivo using either chemical exchange saturation transfer (CEST)-MRI with iopamidol as pHe reporter probe or 31P-NMR spectroscopy with 3-aminopropylphosphonate (3-APP). MR protocols were applied before and after 4 days of treatment; (3) Results: glucose consumption, lactate release and ECAR were increased in both cell lines after UK-5099 exposure. CEST-MRI showed a significant decrease in tumor pHe of 0.22 units in UK-5099-treated mice while there was no change over time for mice treated with the vehicle. Parametric images showed a large heterogeneity in response with 16% of voxels shifting to pHe values under 7.0. In contrast, 31P-NMR spectroscopy was unable to detect any significant variation in pHe; (4) Conclusions: MPC inhibition led to a moderate acidification of the extracellular medium in vivo. CEST-MRI provided high resolution parametric images (0.44 µL/voxel) of pHe highlighting the heterogeneity of response within the tumor when exposed to UK-5099.

18.
Cell Rep ; 35(9): 109202, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077729

RESUMEN

Metabolic plasticity in cancer cells makes use of metabolism-targeting agents very challenging. Drug-induced metabolic rewiring may, however, uncover vulnerabilities that can be exploited. We report that resistance to glycolysis inhibitor 3-bromopyruvate (3-BrPA) arises from DNA methylation in treated cancer cells and subsequent silencing of the monocarboxylate transporter MCT1. We observe that, unexpectedly, 3-BrPA-resistant cancer cells mostly rely on glycolysis to sustain their growth, with MCT4 as an essential player to support lactate flux. This shift makes cancer cells particularly suited to adapt to hypoxic conditions and resist OXPHOS inhibitors and anti-proliferative chemotherapy. In contrast, blockade of MCT4 activity in 3-BrPA-exposed cancer cells with diclofenac or genetic knockout, inhibits growth of derived spheroids and tumors in mice. This study supports a potential mode of collateral lethality according to which metabolic adaptation of tumor cells to a first-line therapy makes them more responsive to a second-line treatment.


Asunto(s)
Metilación de ADN/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/antagonistas & inhibidores , Piruvatos/farmacología , Simportadores/genética , Animales , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Ácido Láctico/metabolismo , Ratones , Modelos Biológicos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Simportadores/metabolismo
19.
Cell Metab ; 33(8): 1701-1715.e5, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34118189

RESUMEN

Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 polyunsaturated FA (PUFA) selectively induced ferroptosis in cancer cells under ambient acidosis. Upon exceeding buffering capacity of triglyceride storage into lipid droplets, n-3 and n-6 PUFA peroxidation led to cytotoxic effects in proportion to the number of double bonds and even more so in the presence of diacylglycerol acyltransferase inhibitors (DGATi). Finally, an n-3 long-chain PUFA-rich diet significantly delayed mouse tumor growth when compared with a monounsaturated FA-rich diet, an effect further accentuated by administration of DGATi or ferroptosis inducers. These data point out dietary PUFA as a selective adjuvant antitumor modality that may efficiently complement pharmacological approaches.


Asunto(s)
Ácidos Grasos Omega-3 , Ferroptosis , Neoplasias , Animales , Ácidos Grasos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Ácidos Grasos Insaturados/metabolismo , Ratones , Neoplasias/tratamiento farmacológico
20.
Sci Adv ; 7(19)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33962944

RESUMEN

Unbalanced immune responses to pathogens can be life-threatening although the underlying regulatory mechanisms remain unknown. Here, we show a hypoxia-inducible factor 1α-dependent microRNA (miR)-210 up-regulation in monocytes and macrophages upon pathogen interaction. MiR-210 knockout in the hematopoietic lineage or in monocytes/macrophages mitigated the symptoms of endotoxemia, bacteremia, sepsis, and parasitosis, limiting the cytokine storm, organ damage/dysfunction, pathogen spreading, and lethality. Similarly, pharmacologic miR-210 inhibition improved the survival of septic mice. Mechanistically, miR-210 induction in activated macrophages supported a switch toward a proinflammatory state by lessening mitochondria respiration in favor of glycolysis, partly achieved by downmodulating the iron-sulfur cluster assembly enzyme ISCU. In humans, augmented miR-210 levels in circulating monocytes correlated with the incidence of sepsis, while serum levels of monocyte/macrophage-derived miR-210 were associated with sepsis mortality. Together, our data identify miR-210 as a fine-tuning regulator of macrophage metabolism and inflammatory responses, suggesting miR-210-based therapeutic and diagnostic strategies.


Asunto(s)
MicroARNs , Sepsis , Animales , Inflamación/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Monocitos/metabolismo , Sepsis/genética , Sepsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...