Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731936

RESUMEN

Multiple myeloma is a malignancy characterized by the accumulation of malignant plasma cells in bone marrow and the production of monoclonal immunoglobulin. A hallmark of cancer is the evasion of immune surveillance. Histone deacetylase inhibitors have been shown to promote the expression of silenced molecules and hold potential to increase the anti-MM efficacy of immunotherapy. The aim of the present work was to assess the potential effect of tinostamustine (EDO-S101), a first-in-class alkylating deacetylase inhibitor, in combination with daratumumab, an anti-CD38 monoclonal antibody (mAb), through different preclinical studies. Tinostamustine increases CD38 expression in myeloma cell lines, an effect that occurs in parallel with an increment in CD38 histone H3 acetylation levels. Also, the expression of MICA and MICB, ligands for the NK cell activating receptor NKG2D, augments after tinostamustine treatment in myeloma cell lines and primary myeloma cells. Pretreatment of myeloma cell lines with tinostamustine increased the sensitivity of these cells to daratumumab through its different cytotoxic mechanisms, and the combination of these two drugs showed a higher anti-myeloma effect than individual treatments in ex vivo cultures of myeloma patients' samples. In vivo data confirmed that tinostamustine pretreatment followed by daratumumab administration significantly delayed tumor growth and improved the survival of mice compared to individual treatments. In summary, our results suggest that tinostamustine could be a potential candidate to improve the efficacy of anti-CD38 mAbs.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Anticuerpos Monoclonales , Mieloma Múltiple , Subfamilia K de Receptores Similares a Lectina de Células NK , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Humanos , ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Ratones , Línea Celular Tumoral , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Glicoproteínas de Membrana/metabolismo , Sinergismo Farmacológico , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Regulación hacia Arriba/efectos de los fármacos
3.
Haematologica ; 109(3): 877-887, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37646661

RESUMEN

Upregulation of a cyclin D gene determined by expression microarrays is an almost universal event in multiple myeloma (MM), but this finding has not been properly confirmed at the protein level. For this reason, we carried out a quantitative analysis of cyclin D proteins using a capillary electrophoresis nanoimmunoassay in newly diagnosed MM patients. Exclusive expression of cyclin D1 and D2 proteins was detected in 54 of 165 (33%) and 30 of 165 (18%) of the MM patients, respectively. Of note, cyclin D1 or D2 proteins were undetectable in 41% of the samples. High levels of cyclin D1 protein were strongly associated with the presence of t(11;14) or 11q gains. Cyclin D2 protein was detected in all the cases bearing t(14;16), but in only 24% of patients with t(4;14). The presence of cyclin D2 was associated with shorter overall survival (hazard ratio =2.14; P=0.017), although patients expressing cyclin D2 protein, but without 1q gains, had a favorable prognosis. In conclusion, although one of the cyclins D is overexpressed at the mRNA level in almost all MM patients, in approximately half of the patients this does not translate into detectable protein. This suggests that cyclins D could not play an oncogenic role in a proportion of patients with MM (clinicaltrials gov. identifier: NCT01916252).


Asunto(s)
Ciclina D1 , Mieloma Múltiple , Humanos , Ciclina D1/genética , Ciclina D2/genética , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Perfilación de la Expresión Génica , Ciclina D
4.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834938

RESUMEN

Early-onset colorectal cancer (EOCRC; age younger than 50 years) incidence has been steadily increasing in recent decades worldwide. The need for new biomarkers for EOCRC prevention strategies is undeniable. In this study, we aimed to explore whether an aging factor, such as telomere length (TL), could be a useful tool in EOCRC screening. The absolute leukocyte TL from 87 microsatellite stable EOCRC patients and 109 healthy controls (HC) with the same range of age, was quantified by Real Time Quantitative PCR (RT-qPCR). Then, leukocyte whole-exome sequencing (WES) was performed to study the status of the genes involved in TL maintenance (hTERT, TERC, DKC1, TERF1, TERF2, TERF2IP, TINF2, ACD, and POT1) in 70 sporadic EOCRC cases from the original cohort. We observed that TL was significantly shorter in EOCRC patients than in healthy individuals (EOCRC mean: 122 kb vs. HC mean: 296 kb; p < 0.001), suggesting that telomeric shortening could be associated with EOCRC susceptibility. In addition, we found a significant association between several SNPs of hTERT (rs79662648), POT1 (rs76436625, rs10263573, rs3815221, rs7794637, rs7784168, rs4383910, and rs7782354), TERF2 (rs251796 and rs344152214), and TERF2IP (rs7205764) genes and the risk of developing EOCRC. We consider that the measurement of germline TL and the status analysis of telomere maintenance related genes polymorphisms at early ages could be non-invasive methods that could facilitate the early identification of individuals at risk of developing EOCRC.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Telómero , Humanos , Persona de Mediana Edad , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Incidencia , Telómero/genética , Telómero/metabolismo , Biomarcadores de Tumor , Detección Precoz del Cáncer/métodos
5.
Cancers (Basel) ; 14(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36011023

RESUMEN

The incidence of early-onset colorectal cancer (EOCRC; age younger than 50 years) has been progressively increasing over the last decades globally, with causes unexplained. A distinct molecular feature of EOCRC is that compared with cases of late-onset colorectal cancer, in EOCRC cases, there is a higher incidence of Nodal Modulator 1 (NOMO1) somatic deletions. However, the mechanisms of NOMO1 in early-onset colorectal carcinogenesis are currently unknown. In this study, we show that in 30% of EOCRCs with heterozygous deletion of NOMO1, there were pathogenic mutations in this gene, suggesting that NOMO1 can be inactivated by deletion or mutation in EOCRC. To study the role of NOMO1 in EOCRC, CRISPR/cas9 technology was employed to generate NOMO1 knockout HCT-116 (EOCRC) and HS-5 (bone marrow) cell lines. NOMO1 loss in these cell lines did not perturb Nodal pathway signaling nor cell proliferation. Expression microarrays, RNA sequencing, and protein expression analysis by LC-IMS/MS showed that NOMO1 inactivation deregulates other signaling pathways independent of the Nodal pathway, such as epithelial-mesenchymal transition and cell migration. Significantly, NOMO1 loss increased the migration capacity of CRC cells. Additionally, a gut-specific conditional NOMO1 KO mouse model revealed no subsequent tumor development in mice. Overall, these findings suggest that NOMO1 could play a secondary role in early-onset colorectal carcinogenesis because its loss increases the migration capacity of CRC cells. Therefore, further study is warranted to explore other signalling pathways deregulated by NOMO1 loss that may play a significant role in the pathogenesis of the disease.

6.
Br J Haematol ; 199(3): 344-354, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35983648

RESUMEN

Biallelic inactivation of TP53 has been included in the definition of double-hit (DH) multiple myeloma (MM), which entails an ominous prognosis. However, this condition, or even the presence of high-risk cytogenetic abnormalities, cannot accurately capture the 15%-20% of the MM population with a median overall survival below 24 months. This prompted us to look for other MM patients who might have transcriptional characteristics similar to those with DH-TP53. In the present study, we analysed RNA-seq, whole-genome and whole-exome sequencing data from 660 newly diagnosed MM (NDMM) patients from the MMRF (Multiple Myeloma Research Foundation) CoMMpass study to characterize the transcriptional signature of TP53 double-hit (DH-TP53) MM. We found 78 genes that were exclusively deregulated in DH-TP53 patients. A score based on these genes identified a group of 50 patients who shared the same transcriptional profile (DH-TP53-like group) whose prognosis was particularly unfavourable [median overall survival (OS) < 2 years], despite not harbouring the biallelic inactivation of TP53. The prognostic value of the DH-TP53 score was externally validated using gene expression data from 850 NDMM patients analysed by microarrays. Furthermore, our DH-TP53 score refined the traditional prognostic stratification of MM patients according to the cytogenetic abnormalities and International Staging System (ISS).


Asunto(s)
Mieloma Múltiple , Humanos , Aberraciones Cromosómicas , Pronóstico , Proteína p53 Supresora de Tumor/genética
7.
Exp Hematol Oncol ; 11(1): 18, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361260

RESUMEN

BACKGROUND: IRE1 is an unfolded protein response (UPR) sensor with kinase and endonuclease activity. It plays a central role in the endoplasmic reticulum (ER) stress response through unconventional splicing of XBP1 mRNA and regulated IRE1-dependent decay (RIDD). Multiple myeloma (MM) cells are known to exhibit an elevated level of baseline ER stress due to immunoglobulin production, however RIDD activity has not been well studied in this disease. In this study, we aimed to investigate the potential of RNA-sequencing in the identification of novel RIDD targets in MM cells and to analyze the role of these targets in MM cells. METHODS: In vitro IRE1-cleavage assay was combined with RNA sequencing. The expression level of RIDD targets in MM cell lines was measured by real-time RT-PCR and Western blot. RESULTS: Bioinformatic analysis revealed hundreds of putative IRE1 substrates in the in vitro assay, 32 of which were chosen for further validation. Looking into the secondary structure of IRE1 substrates, we found that the consensus sequences of IRF4, PRDM1, IKZF1, KLF13, NOTCH1, ATR, DICER, RICTOR, CDK12, FAM168B, and CENPF mRNAs were accompanied by a stem-loop structure essential for IRE1-mediated cleavage. In fact, we show that mRNA and protein levels corresponding to these targets were attenuated in an IRE1-dependent manner by treatment with ER-stress-inducing agents. In addition, a synergistic effect between IMiDs and ER-stress inducers was found. CONCLUSION: This study, using RNA sequencing, shows that IRE1 RNase has a broad range of mRNA substrates in myeloma cells and demonstrates for the first time that IRE1 is a key regulator of several proteins of importance in MM survival and proliferation.

8.
Am J Hematol ; 97(6): 700-710, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35188691

RESUMEN

Loss and/or mutation of the TP53 gene are associated with short survival in multiple myeloma, but the p53 landscape goes far beyond. At least 12 p53 protein isoforms have been identified as a result of a combination of alternative splicing, alternative promoters and/or alternative transcription site starts, which are grouped as α, ß, γ, from transactivation domain (TA), long, and short isoforms. Nowadays, there are no studies evaluating the expression of p53 isoforms and its clinical relevance in multiple myeloma (MM). We used capillary nanoimmunoassay to quantify the expression of p53 protein isoforms in CD138-purified samples from 156 patients with newly diagnosed MM who were treated as part of the PETHEMA/GEM2012 clinical trial and investigated their prognostic impact. Quantitative real-time polymerase chain reaction was used to corroborate the results at RNA levels. Low and high levels of expression of short and TAp53ß/γ isoforms, respectively, were associated with adverse prognosis in MM patients. Multivariate Cox models identified high levels of TAp53ß/γ (hazard ratio [HR], 4.49; p < .001) and high-risk cytogenetics (HR, 2.69; p < .001) as independent prognostic factors associated with shorter time to progression. The current cytogenetic-risk classification was notably improved when expression levels of p53 protein isoforms were incorporated, whereby high-risk MM expressing high levels of short isoforms had significantly longer survival than high-risk patients with low levels of these isoforms. This is the first study that demonstrates the prognostic value of p53 isoforms in MM patients, providing new insights on the role of p53 protein dysregulation in MM biology.


Asunto(s)
Mieloma Múltiple , Proteína p53 Supresora de Tumor , Genes p53 , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/terapia , Pronóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Biology (Basel) ; 12(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671748

RESUMEN

Sports performance in athletes can be limited by respiratory factors, so it is understandable to propose that inspiratory muscle training (IMT) can improve respiratory function and exercise performance. Power-Breathe® (PwB) is a sectorized respiratory muscle training tool that uses a resistive load to train IMT. There is currently a growing interest in respiratory muscle training, so we set out to systematically assess the effects of IMT with PwB on respiratory parameters and athletic performance in physically active, healthy adults. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, the Cochrane and PEDro scales to assess methodological quality, effect size using the Rosenthal formula, and the Cochrane tool for estimation of risk of bias, studies searchable in Medline, Web of Science, and Cochrane. In addition, for the performance of the meta-analysis, the documentation and quantification of the heterogeneity in each meta-analysis were directed through the Cochran's Q test and the I2 statistic; in addition, a publication bias analysis was performed using funnel plots. Of the total of 241 studies identified in the search, 11 studies for the systematic review and nine for the meta-analysis met the exclusion and/or inclusion criteria. IMT, with PwB, showed significant improvements in maximal inspiratory pressure (MIP) and substantial improvements in forced vital capacity (FVC) in the meta-analysis results. Also, sports performance was significantly increased by IMT with PwB. In conclusion, the use of PwB is an IMT tool that improves respiratory and sports performance.

10.
Artículo en Inglés | MEDLINE | ID: mdl-34206354

RESUMEN

This systematic review and meta-analysis aim to provide scientific evidence regarding the effects of training on respiratory muscle training's impact with the PowerBreath®. A systematic analysis based on the PRISMA guides and a conducted research structured around the bases of Web of Science, Scopus, Medline/PubMed, SciELO y Cochrane Library Plus. Six articles published before January 2021 were included. The documentation and quantification of heterogeneity in every meta-analysis were directed through Cochran's Q test and the statistic I2; additionally, a biased publication analysis was made using funnel plots, whose asymmetry was quantified Egger's regression. The methodological quality was assessed through McMaster's. PowerBreath® administering a ≥ 15% resistive load of the maximum inspiratory pressure (PIM) achieves significant improvements (54%) in said pressure within 4 weeks of commencing the inspiratory muscle training. The maximal volume of oxygen (VO2max) considerable enhancements was achieved from the 6 weeks associated with the maximum inspiratory pressure ≥ 21.5% post inspiratory muscle training onwards. Conversely, a significant blood lactate concentration decrement occurred from the 4th week of inspiratory muscle training, after a maximum inspiratory pressure ≥ 6.8% increment. PowerBreath® is a useful device to stimulate sport performance and increase pulmonary function.


Asunto(s)
Rendimiento Atlético , Ejercicios Respiratorios , Pulmón , Músculos Respiratorios , Terapia Respiratoria
11.
Hum Genomics ; 15(1): 11, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557955

RESUMEN

BACKGROUND: Complex developmental encephalopathy syndromes might be the consequence of unknown genetic alterations that are likely to contribute to the full neurological phenotype as a consequence of pathogenic gene combinations. METHODS: To identify the additional genetic contribution to the neurological phenotype, we studied as a test case a boy, with a KCNQ2 exon-7 partial duplication, by single-nucleotide polymorphism (SNP) microarray to detect copy-number variations (CNVs). RESULTS: The proband presented a cerebral palsy like syndrome with a severe motor and developmental encephalopathy. The SNP array analysis detected in the proband several de novo CNVs, nine partial gene losses (LRRC55, PCDH9, NALCN, RYR3, ELAVL2, CDH13, ATP1A2, SLC17A5, ANO3), and two partial gene duplications (PCDH19, EFNA5). The biological functions of these genes are associated with ion channels such as calcium, chloride, sodium, and potassium with several membrane proteins implicated in neural cell-cell interactions, synaptic transmission, and axon guidance. Pathogenically, these functions can be associated to cerebral palsy, seizures, dystonia, epileptic crisis, and motor neuron dysfunction, all present in the patient. CONCLUSIONS: Severe motor and developmental encephalopathy syndromes of unknown origin can be the result of a phenotypic convergence by combination of several genetic alterations in genes whose physiological function contributes to the neurological pathogenic mechanism.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Canal de Potasio KCNQ2/genética , Proteínas de la Membrana/genética , Parálisis Cerebral/genética , Parálisis Cerebral/patología , Niño , Discapacidades del Desarrollo/epidemiología , Discapacidades del Desarrollo/patología , Distonía/genética , Distonía/patología , Epilepsia/genética , Epilepsia/patología , Exones/genética , Duplicación de Gen/genética , Humanos , Masculino , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Convulsiones/genética , Convulsiones/patología , Transmisión Sináptica/genética
13.
Blood Adv ; 4(23): 6023-6033, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33284947

RESUMEN

The search for biomarkers based on the mechanism of drug action has not been thoroughly addressed in the therapeutic approaches to multiple myeloma (MM), mainly because of the difficulty in analyzing proteins obtained from purified plasma cells. Here, we investigated the prognostic impact of the expression of 12 proteins involved in the mechanism of action of bortezomib, lenalidomide, and dexamethasone (VRD), quantified by capillary nanoimmunoassay, in CD138-purified samples from 174 patients with newly diagnosed MM treated according to the PETHEMA/GEM2012 study. A high level of expression of 3 out of 5 proteasome components tested (PSMD1, PSMD4, and PSMD10) negatively influenced survival. The 5 analyzed proteins involved in lenalidomide's mode of action were associated with time to progression (TTP); low levels of cereblon and IRF4 protein and high levels of Ikaros, AGO2, and Aiolos were significantly associated with shorter TTP. Although the glucocorticoid receptor (GCR) level by itself had no significant impact on MM prognosis, a high XPO1 (exportin 1)/GCR ratio was associated with shorter TTP and progression-free survival (PFS). The multivariate Cox model identified high levels of PSMD10 (hazard ratio [HR] TTP, 3.49; P = .036; HR PFS, 5.33; P = .004) and Ikaros (HR TTP, 3.01, P = .014; HR PFS, 2.57; P = .028), and low levels of IRF4 protein expression (HR TTP, 0.33; P = .004; HR PFS, 0.35; P = .004) along with high-risk cytogenetics (HR TTP, 3.13; P < .001; HR PFS, 2.69; P = .002), as independently associated with shorter TTP and PFS. These results highlight the value of assessing proteins related to the mechanism of action of drugs used in MM for predicting treatment outcome.


Asunto(s)
Mieloma Múltiple , Bortezomib/uso terapéutico , Dexametasona , Humanos , Factor de Transcripción Ikaros , Factores Reguladores del Interferón , Lenalidomida , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas
14.
Sci Rep ; 10(1): 19737, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184454

RESUMEN

RNA-seq is currently considered the most powerful, robust and adaptable technique for measuring gene expression and transcription activation at genome-wide level. As the analysis of RNA-seq data is complex, it has prompted a large amount of research on algorithms and methods. This has resulted in a substantial increase in the number of options available at each step of the analysis. Consequently, there is no clear consensus about the most appropriate algorithms and pipelines that should be used to analyse RNA-seq data. In the present study, 192 pipelines using alternative methods were applied to 18 samples from two human cell lines and the performance of the results was evaluated. Raw gene expression signal was quantified by non-parametric statistics to measure precision and accuracy. Differential gene expression performance was estimated by testing 17 differential expression methods. The procedures were validated by qRT-PCR in the same samples. This study weighs up the advantages and disadvantages of the tested algorithms and pipelines providing a comprehensive guide to the different methods and procedures applied to the analysis of RNA-seq data, both for the quantification of the raw expression signal and for the differential gene expression.


Asunto(s)
Algoritmos , Biomarcadores de Tumor/genética , Genoma Humano , Mieloma Múltiple/genética , RNA-Seq/métodos , Análisis de Secuencia de ARN/métodos , Humanos , Mieloma Múltiple/patología , Células Tumorales Cultivadas
15.
Cancers (Basel) ; 12(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987735

RESUMEN

BACKGROUND: Proviral Insertion site for Moloney murine leukemia virus (PIM) kinases are overexpressed in hematologic malignancies, including multiple myeloma. Previous preclinical data from our group demonstrated the anti-myeloma effect of the pan-PIM kinase inhibitor PIM447. METHODS: Based on those data, we evaluate here, by in vitro and in vivo studies, the activity of the triple combination of PIM447 + pomalidomide + dexamethasone (PIM-Pd) in multiple myeloma. RESULTS: Our results show that the PIM-Pd combination exerts a potent anti-myeloma effect in vitro and in vivo, where it markedly delays tumor growth and prolongs survival of treated mice. Mechanism of action studies performed in vitro and on mice tumor samples suggest that the combination PIM-Pd inhibits protein translation processes through the convergent inhibition of c-Myc and mTORC1, which subsequently disrupts the function of eIF4E. Interestingly the MM pro-survival factor IRF4 is also downregulated after PIM-Pd treatment. As a whole, all these molecular changes would promote cell cycle arrest and deregulation of metabolic pathways, including glycolysis and lipid biosynthesis, leading to inhibition of myeloma cell proliferation. CONCLUSIONS: Altogether, our data support the clinical evaluation of the triple combination PIM-Pd for the treatment of patients with multiple myeloma.

16.
J Mol Diagn ; 22(1): 60-71, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605801

RESUMEN

Acute myeloid leukemias (AMLs) are currently genomically characterized by karyotype, fluorescence in situ hybridization (FISH), real-time quantitative PCR, and DNA sequencing. Next-generation sequencing offers the promise of detecting all genomic lesions in a single run. However, technical limitations have hampered the detection of chromosomal rearrangements, so most studies are limited to somatic mutation assessment or require the use of RNA-based strategies. To overcome these limitations, we designed a targeted-DNA capture next-generation sequencing approach associated with easy-to-perform public bioinformatic tools for one-step identification of translocations, inversions, and somatic mutations in AML. Thirty well-characterized newly diagnosed myeloid leukemia patients (27 AML and 3 chronic myeloid leukemia) were tested with the panel. Twenty-three of 24 known rearrangements, as well as one novel fusion gene that could not be detected by karyotype/fluorescence in situ hybridization/real-time quantitative PCR, were detected. This strategy also identified all chromosomal breakpoints as potential targets for future high-sensitive minimal residual disease studies. In addition, mutation analysis revealed the presence of missense protein-coding alterations in at least 1 of the 32 genes evaluated in 21 of 30 patients (70%). This strategy may represent a time- and cost-effective diagnostic method for molecular characterization in AML.


Asunto(s)
Aberraciones Cromosómicas , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Mutación Missense , Secuencia de Bases , Médula Ósea , Puntos de Rotura del Cromosoma , Análisis Mutacional de ADN/métodos , Exactitud de los Datos , Humanos , Hibridación Fluorescente in Situ/métodos , Cariotipificación/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodos
18.
Blood Cancer J ; 9(12): 90, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748515

RESUMEN

Primary plasma cell leukemia (pPCL) is a highly aggressive plasma cell dyscrasia characterised by short remissions and very poor survival. Although the 17p deletion is associated with poor outcome and extramedullary disease in MM, its presence does not confer the degree of aggressiveness observed in pPCL. The comprehensive exploration of isoform expression and RNA splicing events may provide novel information about biological differences between the two diseases. Transcriptomic studies were carried out in nine newly diagnosed pPCL and ten MM samples, all of which harbored the 17p deletion. Unsupervised cluster analysis clearly distinguished pPCL from MM samples. In total 3584 genes and 20033 isoforms were found to be deregulated between pPCL and MM. There were 2727 significantly deregulated isoforms of non-differentially expressed genes. Strangely enough, significant differences were observed in the expression of spliceosomal machinery components between pPCL and MM, in respect of the gene, isoform and the alternative splicing events expression. In summary, transcriptome analysis revealed significant differences in the relative abundance of isoforms between pPCL and MM, even when they both had the 17p deletion. The mRNA processing pathway including RNA splicing machinery emerged as one of the most remarkable mechanisms underlying the biological differences between the two entities.


Asunto(s)
Antecedentes Genéticos , Predisposición Genética a la Enfermedad , Leucemia de Células Plasmáticas/genética , Mieloma Múltiple/genética , Transcriptoma , Anciano , Anciano de 80 o más Años , Empalme Alternativo , Biomarcadores de Tumor , Aberraciones Cromosómicas , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Humanos , Leucemia de Células Plasmáticas/diagnóstico , Masculino , Persona de Mediana Edad , Mieloma Múltiple/diagnóstico , Mutación
19.
Stem Cells ; 37(10): 1357-1368, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31184411

RESUMEN

Mesenchymal stromal cells (MSC) may exert their functions by the release of extracellular vesicles (EV). Our aim was to analyze changes induced in CD34+ cells after the incorporation of MSC-EV. MSC-EV were characterized by flow cytometry (FC), Western blot, electron microscopy, and nanoparticle tracking analysis. EV incorporation into CD34+ cells was confirmed by FC and confocal microscopy, and then reverse transcription polymerase chain reaction and arrays were performed in modified CD34+ cells. Apoptosis and cell cycle were also evaluated by FC, phosphorylation of signal activator of transcription 5 (STAT5) by WES Simple, and clonal growth by clonogenic assays. Human engraftment was analyzed 4 weeks after CD34+ cell transplantation in nonobese diabetic/severe combined immunodeficient mice. Our results showed that MSC-EV incorporation induced a downregulation of proapoptotic genes, an overexpression of genes involved in colony formation, and an activation of the Janus kinase (JAK)-STAT pathway in CD34+ cells. A significant decrease in apoptosis and an increased CD44 expression were confirmed by FC, and increased levels of phospho-STAT5 were confirmed by WES Simple in CD34+ cells with MSC-EV. In addition, these cells displayed a higher colony-forming unit granulocyte/macrophage clonogenic potential. Finally, the in vivo bone marrow lodging ability of human CD34+ cells with MSC-EV was significantly increased in the injected femurs. In summary, the incorporation of MSC-EV induces genomic and functional changes in CD34+ cells, increasing their clonogenic capacity and their bone marrow lodging ability. Stem Cells 2019;37:1357-1368.


Asunto(s)
Antígenos CD34/metabolismo , Células de la Médula Ósea/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Humanos , Ratones
20.
Noncoding RNA ; 5(1)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654527

RESUMEN

Intensive research has been undertaken during the last decade to identify the implication of microRNAs (miRNAs) in the pathogenesis of multiple myeloma (MM). The expression profiling of miRNAs in MM has provided relevant information, demonstrating different patterns of miRNA expression depending on the genetic abnormalities of MM and a key role of some miRNAs regulating critical genes associated with MM pathogenesis. However, the underlying causes of abnormal expression of miRNAs in myeloma cells remain mainly elusive. The final expression of the mature miRNAs is subject to multiple regulation mechanisms, such as copy number alterations, CpG methylation or transcription factors, together with impairment in miRNA biogenesis and differences in availability of the mRNA target sequence. In this review, we summarize the available knowledge about the factors involved in the regulation of miRNA expression and functionality in MM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...