Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Res Insect Sci ; 5: 100072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38314008

RESUMEN

The vine mealybug, Planococcus ficus, is a significant pest of vineyards in all major grape growing regions of the world. This pest causes significant aesthetic damage to berry clusters through its feeding behavior and secretion of "honeydew", which leads to significant decreases in crop marketability. More importantly, the vine mealybug is a vector of several grapevine viruses which are the causal agent of grapevine leafroll disease, one of the most destructive and economically devastating diseases of the grape industry worldwide. As there is no cure for grapevine leafroll disease, the only control measures available to reduce its spread are to remove infected vines whilst simultaneously controlling mealybug populations. Using transcriptomic libraries prepared from male and female mealybugs and a draft genome, we identified and evaluated expression levels of members of the odorant receptor gene family. Interestingly, of the 50 odorant receptors identified from these P. ficus genetic resources, only 23 were found to be expressed in females, suggesting this flightless life stage has a decreased reliance on the olfactory system. In contrast, 46 odorant receptors were found to be expressed in the alate male life stage. Heterologous expression of eight of these receptors, along with the obligate co-receptor, Orco, in HEK293 cells allowed for the identification of two receptors that respond to lavandulyl senecioate, the sole constituent of the sex pheromone used by this species. Interestingly, one of these receptors, PficOR8, also responded to the sex pheromone used by the Japanese mealybug, Planococcus kraunhiae. The data presented here represent the first report of odorant receptor gene family expression levels, as well as the identification of the first sex pheromone receptor, in soft-scale insects. The identification of a receptor for the vine mealybug sex pheromone will allow for the development of novel, species-specific pest control tools and monitoring devices.

2.
Curr Res Insect Sci ; 3: 100062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37398626

RESUMEN

Insects rely on the detection of chemical cues present in the environment to guide their foraging and reproductive behaviour. As such, insects have evolved a sophisticated chemical processing system in their antennae comprised of several types of olfactory proteins. Of these proteins, odorant degrading enzymes are responsible for metabolising the chemical cues within the antennae, thereby maintaining olfactory system function. Members of the carboxyl/cholinesterase gene family are known to degrade odorant molecules with acetate-ester moieties that function as host recognition cues or sex pheromones, however, their specificity for these compounds remains unclear. Here, we evaluate expression levels of this gene family in the light-brown apple moth, Epiphyas postvittana, via RNAseq and identify putative odorant degrading enzymes. We then solve the apo-structure for EposCCE24 by X-ray crystallography to a resolution of 2.43 Å and infer substrate specificity based on structural characteristics of the enzyme's binding pocket. The specificity of EposCCE24 was validated by testing its ability to degrade biologically relevant and non-relevant sex pheromone components and plant volatiles using GC-MS. We found that EposCCE24 is neither capable of discriminating between linear acetate-ester odorant molecules of varying chain length, nor between molecules with varying double bond positions. EposCCE24 efficiently degraded both plant volatiles and sex pheromone components containing acetate-ester functional groups, confirming its role as a broadly-tuned odorant degrading enzyme in the moth olfactory organ.

3.
mBio ; 14(4): e0064523, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37341476

RESUMEN

Erysiphe necator is an obligate fungal pathogen that causes grape powdery mildew, globally the most important disease on grapevines. Previous attempts to obtain a quality genome assembly for this pathogen were hindered by its high repetitive DNA content. Here, chromatin conformation capture (Hi-C) with long-read PacBio sequencing was combined to obtain a chromosome-scale assembly and a high-quality annotation for E. necator isolate EnFRAME01. The resulting 81.1 Mb genome assembly is 98% complete and consists of 34 scaffolds, 11 of which represent complete chromosomes. All chromosomes contain large centromeric-like regions and lack synteny to the 11 chromosomes of the cereal PM pathogen Blumeria graminis. Further analysis of their composition showed that repeats and transposable elements (TEs) occupy 62.7% of their content. TEs were almost evenly interspersed outside centromeric and telomeric regions and massively overlapped with regions of annotated genes, suggesting that they could have a significant functional impact. Abundant gene duplicates were observed as well, particularly in genes encoding candidate secreted effector proteins. Moreover, younger in age gene duplicates exhibited more relaxed selection pressure and were more likely to be located physically close in the genome than older duplicates. A total of 122 genes with copy number variations among six isolates of E. necator were also identified and were enriched in genes that were duplicated in EnFRAME01, indicating they may reflect an adaptive variation. Taken together, our study illuminates higher-order genomic architectural features of E. necator and provides a valuable resource for studying genomic structural variations in this pathogen. IMPORTANCE Grape powdery mildew caused by the ascomycete fungus Erysiphe necator is economically the most important and recurrent disease in vineyards across the world. The obligate biotrophic nature of E. necator hinders the use of typical genetic methods to elucidate its pathogenicity and adaptation to adverse conditions, and thus comparative genomics has been a major method to study its genome biology. However, the current reference genome of E. necator isolate C-strain is highly fragmented with many non-coding regions left unassembled. This incompleteness prohibits in-depth comparative genomic analyses and the study of genomic structural variations (SVs) that are known to affect several aspects of microbial life, including fitness, virulence, and host adaptation. By obtaining a chromosome-scale genome assembly and a high-quality gene annotation for E. necator, we reveal the organization of its chromosomal content, unearth previously unknown features of its biology, and provide a reference for studying genomic SVs in this pathogen.


Asunto(s)
Vitis , Vitis/microbiología , Variaciones en el Número de Copia de ADN , Genómica , Cromosomas , Enfermedades de las Plantas/microbiología
4.
In Vitro Cell Dev Biol Anim ; 58(10): 867-876, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36515806

RESUMEN

Insect cell lines are an invaluable resource that facilitate various fundamental and applied research programs. Genetically engineered insect cell lines, in particular, serve as a platform through which the function of heterologously expressed proteins can be studied. However, a barrier to more widespread utilization and distribution of insect cell lines, genetically modified or not, is the technical and operational challenge associated with traditional cryopreservation methods, including their dependence on the use of liquid nitrogen facilities, animal or human serum products, and relatively high concentrations of permeating cryoprotectants (e.g., DMSO). Recent innovations in cryopreservation technologies have produced reagents with improved abilities to effectively preserve mammalian cell lines for long periods in regular laboratory deep freezers without using serum products, but their effectiveness in preserving genetically engineered insect cell lines has not yet been evaluated. In this study, we engineered Sf9 cells to express a dopamine receptor and used them as a model for evaluating the efficacy of a novel cryopreservation medium product, C80EZ®-INSECT, in not only preserving cell viability and proliferation efficiency but also maintaining the insect cell line's "functionality" after storage at -80°C. We found that the engineered Sf9 cells frozen using C80EZ®-INSECT with 5% DMSO alone and stored at -80°C for 6 mo displayed higher viability and growth rates than cells frozen using traditional fetal bovine serum (FBS)-based cryopreservation media with 10% DMSO that were stored at -80°C or in liquid nitrogen for the same period of time. We also found that after 6 mo of storage at -80°C or in liquid nitrogen the cells retained a responsiveness to dopamine comparable to that of the initial cell line, regardless of the cryopreservation reagent used. These results suggest that, due to the unique characteristics of C80EZ®-INSECT in preventing ice recrystallization and reducing ice crystal size and cellular apoptosis during cryostorage procedures, it is an effective cryopreservation reagent for genetically engineered Sf9 cells, and it practically eliminates the need for liquid nitrogen-based storage facilities and FBS-based cryopreservation formulations, as well as reduces the use of permeating cryoprotectants.


Asunto(s)
Dimetilsulfóxido , Hielo , Humanos , Animales , Dimetilsulfóxido/farmacología , Dimetilsulfóxido/química , Criopreservación/métodos , Crioprotectores/farmacología , Supervivencia Celular , Nitrógeno , Mamíferos
5.
Insect Biochem Mol Biol ; 141: 103708, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973420

RESUMEN

Sex pheromones facilitate species-specific sex communication within the Lepidoptera. They are detected by specialised pheromone receptors (PRs), most of which to date fall into a single monophyletic receptor lineage (frequently referred to as "the PR clade") within the odorant receptor (OR) family. Here we investigated PRs of the invasive horticultural pest, Epiphyas postvittana, commonly known as the light brown apple moth. Ten candidate PRs were selected, based on their male-biased expression in antennae or their relationship to the PR clade, for functional assessment in both HEK293 cells and Xenopus oocytes. Of these, six ORs responded to compounds that include components of the E. postvittana ('Epos') sex pheromone blend or compounds that antagonise sex pheromone attraction. In phylogenies, four of the characterised receptors (EposOR1, 6, 7 and 45) fall within the PR clade and two other male-biased receptors (EposOR30 and 34) group together well outside the PR clade. This new clade of pheromone receptors includes the receptor for (E)-11-tetradecenyl acetate (EposOR30), which is the main component of the sex pheromone blend for this species. Interestingly, receptors of the two clades do not segregate by preference for compounds associated with behavioural response (agonist or antagonist), isomer type (E or Z) or functional group (alcohol or acetate), with examples of each scattered across both clades. Phylogenetic comparison with PRs from other species supports the existence of a second major clade of lepidopteran ORs including, EposOR30 and 34, that has been co-opted into sex pheromone detection in the Lepidoptera. This second clade of sex pheromone receptors has an origin that likely predates the split between the major lepidopteran families.


Asunto(s)
Mariposas Nocturnas/genética , Receptores de Feromonas/genética , Atractivos Sexuales/genética , Animales , Femenino , Células HEK293 , Humanos , Masculino , Filogenia , Receptores de Feromonas/clasificación
7.
Sci Rep ; 10(1): 22308, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339848

RESUMEN

Neuromedin U (NmU) is a neuropeptide regulating diverse physiological processes. The insect homologs of vertebrate NmU are categorized as PRXamide family peptides due to their conserved C-terminal end. However, NmU homologs have been elusive in Mollusca, the second largest phylum in the animal kingdom. Here we report the first molluscan NmU/PRXamide receptor from the slug, Deroceras reticulatum. Two splicing variants of the receptor gene were functionally expressed and tested for binding with ten endogenous peptides from the slug and some insect PRXamide and vertebrate NmU peptides. Three heptapeptides (QPPLPRYa, QPPVPRYa and AVPRPRIa) triggered significant activation of the receptors, suggesting that they are true ligands for the NmU/PRXamide receptor in the slug. Synthetic peptides with structural modifications at different amino acid positions provided important insights on the core moiety of the active peptides. One receptor variant always exhibited higher binding activity than the other variant. The NmU-encoding genes were highly expressed in the slug brain, while the receptor gene was expressed at lower levels in general with relatively higher expression levels in both the brain and foot. Injection of the bioactive peptides into slugs triggered defensive behavior such as copious mucus secretion and a range of other anomalous behaviors including immobilization, suggesting their role in important physiological functions.


Asunto(s)
Gastrópodos/genética , Moluscos/genética , Receptores de Neurotransmisores/genética , Secuencia de Aminoácidos/genética , Animales , Ligandos , Neuropéptidos/genética , Receptores de Neurotransmisores/aislamiento & purificación
8.
Sci Rep ; 10(1): 16366, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004932

RESUMEN

The insect olfactory system operates as a well-choreographed ensemble of molecules which functions to selectively translate volatile chemical messages present in the environment into neuronal impulses that guide insect behaviour. Of these molecules, binding proteins are believed to transport hydrophobic odorant molecules across the aqueous lymph present in antennal sensilla to receptors present in olfactory sensory neurons. Though the exact mechanism through which these proteins operate is still under investigation, these carriers clearly play a critical role in determining what an insect can smell. Binding proteins that transport important sex pheromones are colloquially named pheromone binding proteins (PBPs). Here, we have produced a functional recombinant PBP from the horticultural pest, Epiphyas postvittana (EposPBP3), and experimentally solved its apo-structure through X-ray crystallography to a resolution of 2.60 Å. Structural comparisons with related lepidopteran PBPs further allowed us to propose models for the binding of pheromone components to EposPBP3. The data presented here represent the first structure of an olfactory-related protein from the tortricid family of moths, whose members cause billions of dollars in losses to agricultural producers each year. Knowledge of the structure of these important proteins will allow for subsequent studies in which novel, olfactory molecule-specific insecticides can be developed.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Sensilos/metabolismo , Animales , Estructura Molecular , Receptores Odorantes/metabolismo , Atractivos Sexuales/metabolismo
9.
Front Physiol ; 11: 559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547421

RESUMEN

The brown marmorated stink bug, Halyomorpha halys, is an invasive hemipteran that causes significant economic losses to various agricultural products around the world. Recently, the pyrokinin and capa genes that express multiple neuropeptides were described in this species. Here we report six pyrokinin and capa GPCRs including two splice variants, and evaluate their (a) ability to respond to neuropeptides in cell-based assays, and (b) expression levels by RT-PCR. Functional studies revealed that the H. halys pyrokinin receptor-1 (HalhaPK-R1a & b) responded to the pyrokinin 2 (PK2) type peptide. RT-PCR results revealed that these receptors had little or no expression in the tissues tested, including the whole body, central nervous system, midgut, Malpighian tubules, and reproductive organs of males and females. HalhaPK-R2 showed the strongest response to PK2 peptides and a moderate response to pyrokinin 1 (PK1) type peptides (= DH, diapause hormone), and was expressed in all tissues tested. HalhaPK-R3a & b responded to both PK1 and PK2 peptides. Their gene expression was restricted mostly to the central nervous system and Malpighian tubules. All PK receptors were dominantly expressed in the fifth nymph. HalhaCAPA-R responded specifically to CAPA-PVK peptides (PVK1 and PVK2), and was highly expressed in the Malpighian tubules with low to moderate expression in other tissues, and life stages. Of the six GPCRs, HalhaPK-R3b showed the strongest response to PK1. Our experiments associated the following peptide ligands to the six GPCRs: HalhaPK-R1a & b and HalhaPK-R2 are activated by PK2 peptides, HalhaPK-R3a & b are activated by PK1 (= DH) peptides, and HalhaCAPA-R is activated by PVK peptides. These results pave the way for investigations into the biological functions of H. halys PK and CAPA peptides, and possible species-specific management of H. halys.

10.
Arch Insect Biochem Physiol ; 104(1): e21660, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31994766

RESUMEN

Drosophila suzukii differs from other members of the genus Drosophila in its host preference and oviposition behavior. The flies are attracted to ripening fruits, and females have a serrated ovipositor enabling eggs to be laid inside the fruit. In addition to its huge economic impact, its unique chemoecological, morphological, and physiological characteristics have garnered considerable research interests. In this study, we analyzed D. suzukii antennal transcriptomes to identify sex-biased genes by comparison of differential gene expressions between male antennae (MA) and female antennae (FA). Among 13,583 total genes of the fly genome, 11,787 genes were expressed in either MA or FA. There are only 132 genes (9 in MA, 7 in FA, and 116 in both, FPKM >1) were expressed in antennae exclusively, and 2,570 genes (9 in MA, 0 in FA, and 2,561 in both) were enriched in antennae containing 185 and 113 sex-biased genes in MA and FA, respectively. Interestingly, many immune-related genes were highly expressed in MA, whereas several chemosensory genes were at high rank in FA. We identified 27 sex-biased chemosensory genes including odorant and gustatory receptors, odorant-binding proteins, chemosensory proteins, ionotropic receptors, and cytochrome P450s, and validated the gene expressions using quantitative real-time PCR. The highly expressed sex-biased genes in antennae are likely involved in the fly specific mating, host-finding behaviors, or sex-specific functions. The molecular results demonstrated here will facilitate to find the unique chemoreception of D. suzukii, as well as on the development of new management strategies for this pest.


Asunto(s)
Antenas de Artrópodos/metabolismo , Drosophila/genética , Factores Sexuales , Animales , Células Quimiorreceptoras , Sistema Enzimático del Citocromo P-450/genética , Drosophila/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino
11.
Insect Biochem Mol Biol ; 117: 103289, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31778795

RESUMEN

The Xenopus oocyte and the Human Embryonic Kidney (HEK) 293 cell expression systems are frequently used for functional characterization (deorphanization) of insect odorant receptors (ORs). However, the inherent characteristics of these heterologous systems differ in several aspects, which raises the question of whether the two systems provide comparable results, and how well the results correspond to the responses obtained from olfactory sensory neurons in vivo. Five candidate pheromone receptors were previously identified in the primitive moth Eriocrania semipurpurella (Esem) and their responses were characterized in HEK cells. We re-examined the responses of these five EsemORs in Xenopus oocytes. We showed that in both systems, EsemOR1 specifically responded to the plant volatile ß-caryophyllene. EsemOR3 responded stronger to the pheromone component (S,Z)-6-nonen-2-ol than to its enantiomer (R,Z)-6-nonen-2-ol, the second pheromone component. However, EsemOR3 also responded secondarily to the plant volatile ß-caryophyllene in the oocyte system, but not in the HEK cell system. EsemOR4 was unresponsive in the HEK cells, but responded primarily to (R,Z)-6-nonen-2-ol followed by (S,Z)-6-nonen-2-ol in the oocytes, representing a discovery of a new pheromone receptor in this species. EsemOR5 was broadly tuned in both systems, but the rank order among the most active pheromone compounds and antagonists was different. EsemOR6 showed no response to any compound in either system. We compared the results obtained in the two different heterologous systems with the activity previously recorded in vivo, and performed in situ hybridization to localize the expression of these OR genes in the antennae. In spite of similar results overall, differences in OR responses between heterologous expression systems suggest that conclusions about the function of individual ORs may differ depending on the system used for deorphanization.


Asunto(s)
Proteínas de Insectos/metabolismo , Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Células HEK293 , Humanos , Masculino , Oocitos , Xenopus laevis/metabolismo
12.
Front Cell Neurosci ; 13: 134, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31110474

RESUMEN

Chemical signaling is ubiquitous and employs a variety of receptor types to detect the cacophony of molecules relevant for each living organism. Insects, our most diverse taxon, have evolved unique olfactory receptors with as little as 10% sequence identity between receptor types. We have identified a promiscuous volatile, 2-methyltetrahydro-3-furanone (coffee furanone), that elicits chemosensory and behavioral activity across multiple insect orders and receptors. In vivo and in vitro physiology showed that coffee furanone was detected by roughly 80% of the recorded neurons expressing the insect-specific olfactory receptor complex in the antenna of Drosophila melanogaster, at concentrations similar to other known, and less promiscuous, ligands. Neurons expressing specialized receptors, other chemoreceptor types, or mutants lacking the complex entirely did not respond to this compound. This indicates that coffee furanone is a promiscuous ligand for the insect olfactory receptor complex itself and did not induce non-specific cellular responses. In addition, we present homology modeling and docking studies with selected olfactory receptors that suggest conserved interaction regions for both coffee furanone and known ligands. Apart from its physiological activity, this known food additive elicits a behavioral response for several insects, including mosquitoes, flies, and cockroaches. A broad-scale behaviorally active molecule non-toxic to humans thus has significant implications for health and agriculture. Coffee furanone serves as a unique tool to unlock molecular, physiological, and behavioral relationships across this diverse receptor family and animal taxa.

13.
Insect Biochem Mol Biol ; 100: 39-47, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29894821

RESUMEN

The odorant receptors (ORs) of insects are crucial for host and mate recognition. In moths (Lepidoptera), specialized ORs are involved in male detection of the sex pheromone produced by females. Most moth sex pheromones are C10-C18 acetates, alcohols, and aldehydes (Type I pheromones), and most pheromone receptors (PRs) characterized to date are from higher Lepidoptera (Ditrysia), responding to these types of compounds. With few exceptions, functionally characterized PRs fall into what has been called the "PR-clade", which also contains receptors that have yet to be characterized. While it has been suggested that moth PRs have evolved from plant odor-detecting ORs, it is not known when receptors for Type I pheromones arose. This is largely due to a lack of functionally characterized PRs from non-ditrysian Lepidoptera. The currant shoot borer moth, Lampronia capitella (Prodoxidae), belongs to a non-ditrysian lineage, and uses Type I pheromone compounds. We identified 53 ORs from antennal transcriptomes of this species, and analyzed their phylogenetic relationships with known lepidopteran ORs. Using a HEK293 cell-based assay, we showed that three of the LcapORs with male-biased expression (based on FPKM values) respond to Type I pheromone compounds. Two of them responded to pheromone components of L. capitella and one to a structurally related compound. These PRs are the first from a non-ditrysian moth species reported to respond to Type I compounds. They belong to two of the more early-diverging subfamilies of the PR-clade for which a role in pheromone detection had not previously been demonstrated. Hence, our definition of the monophyletic lepidopteran PR-clade includes these receptors from a non-ditrysian species, based on functional support.


Asunto(s)
Antenas de Artrópodos/metabolismo , Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Receptores de Feromonas/metabolismo , Animales , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Mariposas Nocturnas/genética , Filogenia , Receptores Odorantes/genética , Receptores de Feromonas/genética
14.
Sci Rep ; 8(1): 3489, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472565

RESUMEN

Insect olfactory receptors are routinely expressed in heterologous systems for functional characterisation. It was recently discovered that the essential olfactory receptor co-receptor (Orco) of the Hessian fly, Mayetiola destructor (Mdes), does not respond to the agonist VUAA1, which activates Orco in all other insects analysed to date. Here, using a mutagenesis-based approach we identified three residues in MdesOrco, located in different transmembrane helices as supported by 3D modelling, that confer sensitivity to VUAA1. Reciprocal mutations in Drosophila melanogaster (Dmel) and the noctuid moth Agrotis segetum (Aseg) Orcos diminish sensitivity of these proteins to VUAA1. Additionally, mutating these residues in DmelOrco and AsegOrco compromised odourant receptor (OR) dependent ligand-induced Orco activation. In contrast, both wild-type and VUAA1-sensitive MdesOrco were capable of forming functional receptor complexes when coupled to ORs from all three species, suggesting unique complex properties in M. destructor, and that not all olfactory receptor complexes are "created" equal.


Asunto(s)
Proteínas de Drosophila/genética , Nematocera/genética , Receptores Odorantes/genética , Olfato/genética , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Proteínas de Drosophila/antagonistas & inhibidores , Drosophila melanogaster/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Nematocera/efectos de los fármacos , Odorantes/análisis , Neuronas Receptoras Olfatorias/efectos de los fármacos , Unión Proteica/genética , Receptores Odorantes/antagonistas & inhibidores , Olfato/fisiología , Tioglicolatos/farmacología , Triazoles/farmacología
15.
Mol Biol Evol ; 34(11): 2733-2746, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126322

RESUMEN

Pheromone receptors (PRs) are essential in moths to detect sex pheromones for mate finding. However, it remains unknown from which ancestral proteins these specialized receptors arose. The oldest lineages of moths, so-called non-ditrysian moths, use short-chain pheromone components, secondary alcohols, or ketones, so called Type 0 pheromones that are similar to many common plant volatiles. It is, therefore, possible that receptors for these ancestral pheromones evolved from receptors detecting plant volatiles. Hence, we identified the odorant receptors (ORs) from a non-ditrysian moth, Eriocrania semipurpurella (Eriocraniidae, Lepidoptera), and performed functional characterization of ORs using HEK293 cells. We report the first receptors that respond to Type 0 pheromone compounds; EsemOR3 displayed highest sensitivity toward (2S, 6Z)-6-nonen-2-ol, whereas EsemOR5 was most sensitive to the behavioral antagonist (Z)-6-nonen-2-one. These receptors also respond to plant volatiles of similar chemical structures, but with lower sensitivity. Phylogenetically, EsemOR3 and EsemOR5 group with a plant volatile-responding receptor from the tortricid moth Epiphyas postvittana (EposOR3), which together reside outside the previously defined lepidopteran PR clade that contains the PRs from more derived lepidopteran families. In addition, one receptor (EsemOR1) that falls at the base of the lepidopteran PR clade, responded specifically to ß-caryophyllene and not to any other additional plant or pheromone compounds. Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles. They are unrelated to PRs detecting pheromones in more derived Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles.


Asunto(s)
Lepidópteros/genética , Receptores de Feromonas/genética , Atractivos Sexuales/genética , Animales , Proteínas Portadoras/metabolismo , Evolución Molecular , Células HEK293/metabolismo , Humanos , Cetonas/metabolismo , Mariposas Nocturnas/genética , Feromonas/metabolismo , Filogenia , Sesquiterpenos Policíclicos , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores de Feromonas/metabolismo , Sesquiterpenos/metabolismo , Atractivos Sexuales/metabolismo
16.
Front Cell Neurosci ; 10: 212, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27656130

RESUMEN

The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These features include a short, non-feeding adult life stage (1-2 days) and the use of a long-range sex pheromone produced and released by adult females. Sex pheromones are detected by members of the odorant receptor (OR) family within the Lepidoptera, but no receptors for similar long-range sex pheromones have been characterized from the Diptera. Previously, 122 OR genes have been annotated from the Hessian fly genome, with many of them showing sex-biased expression in the antennae. Here we have expressed, in HEK293 cells, five MdesORs that display male-biased expression in antennae, and we have identified MdesOR115 as a Hessian fly sex pheromone receptor. MdesOR115 responds primarily to the sex pheromone component (2S,8E,10E)-8,10-tridecadien-2-yl acetate, and secondarily to the corresponding Z,E-isomer. Certain sensory neuron membrane proteins (i.e., SNMP1) are important for responses of pheromone receptors in flies and moths. The Hessian fly genome is unusual in that it encodes six SNMP1 paralogs, of which five are expressed in antennae. We co-expressed each of the five antennal SNMP1 paralogs together with each of the five candidate sex pheromone receptors from the Hessian fly and found that they do not influence the response of MdesOR115, nor do they confer responsiveness in any of the non-responsive ORs to any of the sex pheromone components identified to date in the Hessian fly. Using Western blots, we detected protein expression of MdesOrco, all MdesSNMPs, and all MdesORs except for MdesOR113, potentially explaining the lack of response from this OR. In conclusion, we report the first functional characterization of an OR from the Cecidomyiidae, extending the role of ORs as long-range sex pheromone detectors from the Lepidoptera into the Diptera.

17.
Curr Biol ; 26(20): 2762-2769, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27641770

RESUMEN

Feces is an abundant, rich source of energy, utilized by a myriad of organisms, not least by members of the order Diptera, i.e., flies. How Drosophila melanogaster reacts to fecal matter remains unclear. Here, we examined oviposition behavior toward a range of fecal samples from mammals native to the putative Southeast African homeland of the fly. We show that D. melanogaster display a strong oviposition aversion toward feces from carnivorous mammals but indifference or even attraction toward herbivore dung. We identify a set of four predictor volatiles, which can be used to differentiate fecal from non-fecal matter, as well as separate carnivore from herbivore feces. Of these volatiles, phenol-indicative of carnivore feces-confers egg-laying aversion and is detected by a single class of sensory neurons expressing Or46a. The Or46a-expressing neurons are necessary and sufficient for oviposition site aversion. We further demonstrate that carnivore feces-unlike herbivore dung-contain a high rate of pathogenic bacteria taxa. These harmful bacteria produce phenol from L-tyrosine, an amino acid specifically enriched in high protein diets, such as consumed by carnivores. Finally, we demonstrate that carnivore feces, as well as phenol, is also avoided by a ball-rolling species of dung beetle, suggesting that phenol is a widespread avoidance signal because of its association with pathogenic bacteria.


Asunto(s)
Reacción de Prevención , Drosophila melanogaster/fisiología , Heces/química , Oviposición , Fenoles/metabolismo , Animales , Dieta , Femenino , Mamíferos/fisiología , Células Receptoras Sensoriales/metabolismo
18.
PLoS One ; 10(5): e0128596, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26017144

RESUMEN

The lightbrown apple moth, Epiphyas postvittana is an increasingly global pest of horticultural crops. Like other moths, E. postvittana relies on olfactory cues to locate mates and oviposition sites. To detect these cues, moths have evolved families of genes encoding elements of the peripheral olfactory reception system, including odor carriers, receptors and degrading enzymes. Here we undertake a transcriptomic approach to identify members of these families expressed in the adult antennae of E. postvittana, describing open reading frames encoding 34 odorant binding proteins, 13 chemosensory proteins, 70 odorant receptors, 19 ionotropic receptors, nine gustatory receptors, two sensory neuron membrane proteins, 27 carboxylesterases, 20 glutathione-S-transferases, 49 cytochrome p450s and 18 takeout proteins. For the odorant receptors, quantitative RT-PCR corroborated RNAseq count data on steady state transcript levels. Of the eight odorant receptors that group phylogenetically with pheromone receptors from other moths, two displayed significant male-biased expression patterns, one displayed significant female-biased expression pattern and five were expressed equally in the antennae of both sexes. In addition, we found two male-biased odorant receptors that did not group with previously described pheromone receptors. This suite of olfaction-related genes provides a substantial resource for the functional characterization of this signal transduction system and the development of odor-mediated control strategies for horticultural pests.


Asunto(s)
Mariposas Nocturnas/genética , Receptores Odorantes/genética , Olfato/genética , Animales , Antenas de Artrópodos/fisiología , Perfilación de la Expresión Génica/métodos , Genes de Insecto/genética , Proteínas de Insectos/genética , Odorantes , Filogenia , Receptores de Feromonas/genética , Transducción de Señal/genética , Olfato/fisiología , Transcriptoma/genética
19.
Insect Biochem Mol Biol ; 54: 22-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25174788

RESUMEN

The development of rapid and reliable assays to characterize insect odorant receptors (ORs) and pheromone receptors (PRs) remains a challenge for the field. Typically ORs and PRs are functionally characterized either in vivo in transgenic Drosophila or in vitro through expression in Xenopus oocytes. While these approaches have succeeded, they are not well suited for high-throughput screening campaigns, primarily due to inherent characteristics that limit their ability to screen large quantities of compounds in a short period of time. The development of a practical, robust and consistent in vitro assay for functional studies on ORs and PRs would allow for high-throughput screening for ligands, as well as for compounds that could be used as novel olfactory-based pest management tools. Here we describe a novel method of utilizing human embryonic kidney cells (HEK293) transfected with inducible receptor constructs for the functional characterization of ORs in 96-well plates using a fluorescent spectrophotometer. Using EposOrco and EposOR3 from the pest moth, Epiphyas postvittana as an example, we generated HEK293 cell lines with robust and consistent responses to ligands in functional assays. Single-cell sorting of cell lines by FACS facilitated the selection of isogenic cell lines with maximal responses, and the addition of epitope tags on the N-termini allowed the detection of recombinant proteins in homogenates by western blot and in cells by immunocytochemistry. We thoroughly describe the methods used to generate these OR-expressing cell lines, demonstrating that they have all the necessary features required for use in high-throughput screening platforms.


Asunto(s)
Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Receptores de Feromonas/metabolismo , Animales , Proteínas Portadoras , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Mariposas Nocturnas/genética , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores de Feromonas/genética , Transfección/métodos
20.
J Chem Ecol ; 40(1): 63-70, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24408442

RESUMEN

Sexual communication in the Lepidoptera typically involves a female-produced sex pheromone that attracts males of the same species. The most common type of moth sex pheromone comprises individual or blends of fatty acyl derivatives that are synthesized by a specific enzymatic pathway in the female's pheromone gland, often including a desaturation step. This reaction is catalyzed by fatty acyl desaturases that introduce double bonds at specific locations in the fatty acid precursor backbone. The two tortricid moths, Ctenopseustis obliquana and C. herana (brown-headed leafrollers), which are endemic in New Zealand, both use (Z)-5-tetradecenyl acetate as part of their sex pheromone. In C. herana, (Z)-5-tetradecenyl acetate is the sole component of the pheromone. Labeling experiments have revealed that this compound is produced via an unusual Δ5-desaturation of myristic acid. Previously six desaturases were identified from the pheromone glands of Ctenopseustis and its sibling genus Planotortrix, with one differentially regulated to produce the distinct blends used by individual species. However, none were able to conduct the Δ5-desaturation observed in C. herana, and presumably C. obliquana. We have now identified an additional desaturase gene, desat7, expressed in the pheromone glands of both Ctenopseustis species, which is not closely related to any previously described moth pheromone desaturase. The encoded enzyme displays Δ5-desaturase activity on myristic acid when heterologously expressed in yeast, but is not able to desaturate any other fatty acid (C8-C16). We conclude that desat7 represents a new group of desaturases that has evolved a role in the biosynthesis of sex pheromones in moths.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Lepidópteros/enzimología , Ácido Mirístico/metabolismo , Atractivos Sexuales/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/genética , Femenino , Espacio Intracelular/metabolismo , Lepidópteros/citología , Lepidópteros/metabolismo , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...