Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Clin Neurophysiol ; 162: 41-52, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555666

RESUMEN

OBJECTIVE: We aimed to gain further insight into previously reported beneficial effects of subthalamic nucleus deep brain stimulation (STN-DBS) on visually-guided saccades by examining the effects of unilateral compared to bilateral stimulation, paradigm, and target eccentricity on saccades in individuals with Parkinson's disease (PD). METHODS: Eleven participants with PD and STN-DBS completed the visually-guided saccade paradigms with OFF, RIGHT, LEFT, and BOTH stimulation. Rightward saccade performance was evaluated for three paradigms and two target eccentricities. RESULTS: First, we found that BOTH and LEFT increased gain, peak velocity, and duration compared to OFF stimulation. Second, we found that BOTH and LEFT stimulation decreased latency during the gap and step paradigms but had no effect on latency during the overlap paradigm. Third, we found that RIGHT was not different compared to OFF at benefiting rightward saccade performance. CONCLUSIONS: Left unilateral and bilateral stimulation both improve the motor outcomes of rightward visually-guided saccades. Additionally, both improve latency, a cognitive-motor outcome, but only in paradigms when attention does not require disengagement from a present stimulus. SIGNIFICANCE: STN-DBS primarily benefits motor and cognitive-motor aspects of visually-guided saccades related to reflexive attentional shifting, with the latter only evident when the fixation-related attentional system is not engaged.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Movimientos Sacádicos , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Movimientos Sacádicos/fisiología , Núcleo Subtalámico/fisiopatología , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estimulación Luminosa/métodos
2.
IBRO Neurosci Rep ; 16: 361-367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38425546

RESUMEN

Background: Deep Brain Stimulation (DBS) in the Subthalamic Nucleus (STN) or the Globus Pallidus Interna (GPI) is well-established as a surgical technique for improving global motor function in patients with idiopathic Parkinson's Disease (PD). Previous research has indicated speech deterioration in more than 30% of patients after STN-DBS implantation, whilst speech outcomes following GPI-DBS have received far less attention. Research comparing speech outcomes for patients with PD receiving STN-DBS and GPI-DBS can inform pre-surgical counseling and assist with clinician and patient decision-making when considering the neural targets selected for DBS-implantation. The aims of this pilot study were (1) to compare perceptual and acoustic speech outcomes for a group of patients with PD receiving bilateral DBS in the STN or the GPI with DBS stimulation both ON and OFF, and (2) examine associations between acoustic and perceptual speech measures and clinical characteristics. Methods: Ten individuals with PD receiving STN-DBS and eight individuals receiving GPI-DBS were audio-recorded reading a passage. Three listeners blinded to neural target and stimulation condition provided perceptual judgments of intelligibility and overall speech severity. Speech acoustic measures were obtained from the recordings. Acoustic and perceptual measures and clinical characteristics were compared for the two neural targets and stimulation conditions. Results: Intelligibility and speech severity were not significantly different across neural target or stimulation conditions. Generally, acoustic measures were also not statistically different for the two neural targets or stimulation conditions. Acoustic measures reflecting more varied speech prosody were associated with improved intelligibility and lessened severity. Convergent correlations were found between UPDRS-III speech scores and perceptual measures of intelligibility and severity. Conclusion: This study reports a systematic comparison of perceptual and acoustic speech outcomes following STN-DBS and GPI-DBS. Statistically significant differences in acoustic measures for the two neural targets were small in magnitude and did not yield group differences in perceptual measures. The absence of robust differences in speech outcomes for the two neural targets has implications for pre-surgical counseling. Results provide preliminary support for reliance on considerations other than speech when selecting the target for DBS in patients with PD.

4.
J Parkinsons Dis ; 14(3): 609-617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38189710

RESUMEN

There is compelling evidence that exercise must be part of main line therapy for people with Parkinson's disease. In this viewpoint, we outline the four key components of exercise: aerobic exercise, resistance exercise, flexibility exercise, and neuromotor exercises (posture, gait, balance, and agility) that can improve both motor and non-motor symptoms of the disease and, in the case of aerobic exercise, may delay the disease. We outline guidelines on how to change and optimize the exercise prescription at different stages of the disease.


Asunto(s)
Terapia por Ejercicio , Ejercicio Físico , Enfermedad de Parkinson , Humanos , Ejercicio Físico/fisiología , Terapia por Ejercicio/métodos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/rehabilitación , Enfermedad de Parkinson/fisiopatología
5.
J Parkinsons Dis ; 14(1): 121-133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38189712

RESUMEN

BACKGROUND: An attenuated heart rate response to exercise, termed chronotropic incompetence, has been reported in Parkinson's disease (PD). Chronotropic incompetence may be a marker of autonomic dysfunction and a cause of exercise intolerance in early stages of PD. OBJECTIVE: To investigate the relationship between chronotropic incompetence, orthostatic blood pressure change (supine - standing), and exercise performance (maximal oxygen consumption, VO2peak) in individuals with early PD within 5 years of diagnosis not on dopaminergic medications. METHODS: We performed secondary analyses of heart rate and blood pressure data from the Study in Parkinson's Disease of Exercise (SPARX). RESULTS: 128 individuals were enrolled into SPARX (63.7±9.3 years; 57.0% male, 0.4 years since diagnosis [median]). 103 individuals were not taking chronotropic medications, of which 90 had a normal maximal heart rate response to exercise testing (155.3±14.0 bpm; PDnon-chrono) and 13 showed evidence of chronotropic incompetence (121.3±11.3 bpm; PDchrono, p < 0.05). PDchrono had decreased VO2peak compared to PDnon-chrono (19.7±4.5 mL/kg/min and 24.3±5.8 mL/kg/min, respectively, p = 0.027). There was a positive correlation between peak heart rate during exercise and the change in systolic blood pressure from supine to standing (r = 0.365, p < 0.001). CONCLUSIONS: A subgroup of individuals with early PD not on dopaminergic medication had chronotropic incompetence and decreased VO2peak, which may be related to autonomic dysfunction. Evaluation of both heart rate responses to incremental exercise and orthostatic vital signs may serve as biomarkers of early autonomic impairment and guide treatment. Further studies should investigate whether cardiovascular autonomic dysfunction affects the ability to exercise and whether exercise training improves autonomic dysfunction.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Insuficiencia Cardíaca , Enfermedad de Parkinson , Humanos , Masculino , Femenino , Prueba de Esfuerzo , Enfermedad de Parkinson/complicaciones , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Enfermedades del Sistema Nervioso Autónomo/etiología , Frecuencia Cardíaca/fisiología
6.
Front Hum Neurosci ; 17: 1250114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941570

RESUMEN

Introduction: Hypophonia is a common feature of Parkinson's disease (PD); however, the contribution of motor cortical activity to reduced phonatory scaling in PD is still not clear. Methods: In this study, we employed a sustained vowel production task during functional magnetic resonance imaging to compare brain activity between individuals with PD and hypophonia and an older healthy control (OHC) group. Results: When comparing vowel production versus rest, the PD group showed fewer regions with significant BOLD activity compared to OHCs. Within the motor cortices, both OHC and PD groups showed bilateral activation of the laryngeal/phonatory area (LPA) of the primary motor cortex as well as activation of the supplementary motor area. The OHC group also recruited additional activity in the bilateral trunk motor area and right dorsal premotor cortex (PMd). A voxel-wise comparison of PD and HC groups showed that activity in right PMd was significantly lower in the PD group compared to OHC (p < 0.001, uncorrected). Right PMd activity was positively correlated with maximum phonation time in the PD group and negatively correlated with perceptual severity ratings of loudness and pitch. Discussion: Our findings suggest that hypoactivation of PMd may be associated with abnormal phonatory control in PD.

7.
Mov Disord ; 38(12): 2155-2162, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37916476

RESUMEN

Genetic subtyping of patients with Parkinson's disease (PD) may assist in predicting the cognitive and motor outcomes of subthalamic deep brain stimulation (STN-DBS). Practical questions were recently raised with the emergence of new data regarding suboptimal cognitive outcomes after STN-DBS in individuals with PD associated with pathogenic variants in glucocerebrosidase gene (GBA1-PD). However, a variety of gaps and controversies remain. (1) Does STN-DBS truly accelerate cognitive deterioration in GBA1-PD? If so, what is the clinical significance of this acceleration? (2) How should the overall risk-to-benefit ratio of STN-DBS in GBA1-PD be established? (3) If STN-DBS has a negative effect on cognition in GBA1-PD, how can this effect be minimized? (4) Should PD patients be genetically tested before STN-DBS? (5) How should GBA1-PD patients considering STN-DBS be counseled? We aim to summarize the currently available relevant data and detail the gaps and controversies that exist pertaining to these questions. In the absence of evidence-based data, all authors strongly agree that clinicians should not categorically deny DBS to PD patients based solely on genotype (GBA1 status). We suggest that PD patients considering DBS may be offered genetic testing for GBA1, where available and feasible, so the potential risks and benefits of STN-DBS can be properly weighed by both the patient and clinician. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Conocimiento , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Cognición , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/complicaciones , Núcleo Subtalámico/fisiología
8.
Front Hum Neurosci ; 17: 1224611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37850040

RESUMEN

Background: Antiparkinson medication and subthalamic nucleus deep brain stimulation (STN-DBS), two common treatments of Parkinson's disease (PD), effectively improve skeletomotor movements. However, evidence suggests that these treatments may have differential effects on eye and limb movements, although both movement types are controlled through the parallel basal ganglia loops. Objective: Using a task that requires both eye and upper limb movements, we aimed to determine the effects of medication and STN-DBS on eye and upper limb movement performance. Methods: Participants performed a visually-guided reaching task. We collected eye and upper limb movement data from participants with PD who were tested both OFF and ON medication (n = 34) or both OFF and ON bilateral STN-DBS while OFF medication (n = 11). We also collected data from older adult healthy controls (n = 14). Results: We found that medication increased saccade latency, while having no effect on reach reaction time (RT). Medication significantly decreased saccade peak velocity, while increasing reach peak velocity. We also found that bilateral STN-DBS significantly decreased saccade latency while having no effect on reach RT, and increased saccade and reach peak velocity. Finally, we found that there was a positive relationship between saccade latency and reach RT, which was unaffected by either treatment. Conclusion: These findings show that medication worsens saccade performance and benefits reaching performance, while STN-DBS benefits both saccade and reaching performance. We explore what the differential beneficial and detrimental effects on eye and limb movements suggest about the potential physiological changes occurring due to treatment.

9.
Front Neurosci ; 17: 1228444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746149

RESUMEN

Parkinson's Disease (PD) is a prevalent and complex age-related neurodegenerative condition for which there are no disease-modifying treatments currently available. The pathophysiological process underlying PD remains incompletely understood but increasing evidence points to multiple system dysfunction. Interestingly, the past decade has produced evidence that exercise not only reduces signs and symptoms of PD but is also potentially neuroprotective. Characterizing the mechanistic pathways that are triggered by exercise and lead to positive outcomes will improve understanding of how to counter disease progression and symptomatology. In this review, we highlight how exercise regulates the neuroendocrine system, whose primary role is to respond to stress, maintain homeostasis and improve resilience to aging. We focus on a group of hormones - cortisol, melatonin, insulin, klotho, and vitamin D - that have been shown to associate with various non-motor symptoms of PD, such as mood, cognition, and sleep/circadian rhythm disorder. These hormones may represent important biomarkers to track in clinical trials evaluating effects of exercise in PD with the aim of providing evidence that patients can exert some behavioral-induced control over their disease.

13.
Front Neurol ; 14: 1182561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448744

RESUMEN

Stroke is a leading cause of disability worldwide and upper limb hemiparesis is the most common post-stroke disability. Recent studies suggest that clinically significant motor recovery is possible in chronic stroke survivors with severe impairment of the upper limb. Three promising strategies that have been investigated are (1) high dose rehabilitation therapy (2) bilateral motor priming and (3) vagus nerve stimulation. We propose that the future of effective and efficient upper limb rehabilitation will likely require a combination of these approaches.

14.
J Parkinsons Dis ; 13(6): 917-935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522216

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) improves intensive aspects of movement (velocity) in people with Parkinson's disease (PD) but impairs the more cognitively demanding coordinative aspects of movement (error). We extended these findings by evaluating STN-DBS induced changes in intensive and coordinative aspects of movement during a memory-guided reaching task with varying retention delays. OBJECTIVE: We evaluated the effect of STN-DBS on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to healthy controls (HC). METHODS: Eleven participants with PD completed the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) and performed a memory-guided reaching task under four different STN-DBS conditions (DBS-OFF, DBS-RIGHT, DBS-LEFT, and DBS-BOTH) and two retention delays (0.5 s and 5 s). An additional 13 HC completed the memory-guided reaching task. RESULTS: Unilateral and bilateral STN-DBS improved the MDS-UPDRS III scores. In the memory-guided reaching task, both unilateral and bilateral STN-DBS increased the intensive aspects of movement (amplitude and velocity) in the direction toward HC but impaired coordinative aspects of movement (error) away from the HC. Furthermore, movement time was decreased but reaction time was unaffected by STN-DBS. Shorter retention delays increased amplitude and velocity, decreased movement times, and decreased error, but increased reaction times in the participants with PD. There were no interactions between STN-DBS condition and retention delay. CONCLUSION: STN-DBS may affect cognitive-motor functioning by altering activity throughout cortico-basal ganglia networks and the oscillatory activity subserving them.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología , Movimiento/fisiología , Cognición , Resultado del Tratamiento
15.
NPJ Parkinsons Dis ; 9(1): 85, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277372

RESUMEN

Objective measures of disease progression are critically needed in research on Parkinson's disease (PD) and atypical Parkinsonism but may be hindered by both practicality and cost. The Purdue Pegboard Test (PPT) is objective, has high test-retest reliability, and has a low cost. The goals of this study were to determine: (1) longitudinal changes in PPT in a multisite cohort of patients with PD, atypical Parkinsonism, and healthy controls; (2) whether PPT performance reflects brain pathology revealed by neuroimaging; (3) quantify kinematic deficits shown by PD patients during PPT. Parkinsonian patients showed a decline in PPT performance that correlated with motor symptom progression, which was not seen in controls. Neuroimaging measures from basal ganglia were significant predictors of PPT performance in PD, whereas cortical, basal ganglia, and cerebellar regions were predictors for atypical Parkinsonism. Accelerometry in a subset of PD patients showed a diminished range of acceleration and irregular patterns of acceleration, which correlated with PPT scores.

16.
Front Immunol ; 14: 1178448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251392

RESUMEN

Parkinson's disease (PD), a heterogeneous disease with no disease-modifying treatments available, is the fastest growing neurological disease worldwide. Currently, physical exercise is the most promising treatment to slow disease progression, with evidence suggesting it is neuroprotective in animal models. The onset, progression, and symptom severity of PD are associated with low grade, chronic inflammation which can be quantified by measuring inflammatory biomarkers. In this perspective, we argue that C-reactive protein (CRP) should be used as the primary biomarker for monitoring inflammation and therefore disease progression and severity, particularly in studies examining the impact of an intervention on the signs and symptoms of PD. CRP is the most studied biomarker of inflammation, and it can be detected using relatively well-standardized assays with a wide range of detection, allowing for comparability across studies while generating robust data. An additional advantage of CRP is its ability to detect inflammation irrespective of its origin and specific pathways, an advantageous characteristic when the cause of inflammation remains unknown, such as PD and other chronic, heterogeneous diseases.


Asunto(s)
Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Proteína C-Reactiva/metabolismo , Biomarcadores , Inflamación/complicaciones , Ejercicio Físico , Progresión de la Enfermedad
17.
Front Hum Neurosci ; 17: 962909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875233

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN), which consistently improves limb motor functions, shows mixed effects on speech functions in Parkinson's disease (PD). One possible explanation for this discrepancy is that STN neurons may differentially encode speech and limb movement. However, this hypothesis has not yet been tested. We examined how STN is modulated by limb movement and speech by recording 69 single- and multi-unit neuronal clusters in 12 intraoperative PD patients. Our findings indicated: (1) diverse patterns of modulation in neuronal firing rates in STN for speech and limb movement; (2) a higher number of STN neurons were modulated by speech vs. limb movement; (3) an overall increase in neuronal firing rates for speech vs. limb movement; and (4) participants with longer disease duration had higher firing rates. These data provide new insights into the role of STN neurons in speech and limb movement.

18.
Brain Sci ; 12(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36552155

RESUMEN

The pathogenesis of Parkinson's disease (PD) is complex, multilayered, and not fully understood, resulting in a lack of effective disease-modifying treatments for this prevalent neurodegenerative condition. Symptoms of PD are heterogenous, including motor impairment as well as non-motor symptoms such as depression, cognitive impairment, and circadian disruption. Aging and stress are important risk factors for PD, leading us to explore pathways that may either accelerate or protect against cellular aging and the detrimental effects of stress. Cortisol is a much-studied hormone that can disrupt mitochondrial function and increase oxidative stress and neuroinflammation, which are recognized as key underlying disease mechanisms in PD. The more recently discovered klotho protein, considered a general aging-suppressor, has a similarly wide range of actions but in the opposite direction to cortisol: promoting mitochondrial function while reducing oxidative stress and inflammation. Both hormones also converge on pathways of vitamin D metabolism and insulin resistance, also implicated to play a role in PD. Interestingly, aging, stress and PD associate with an increase in cortisol and decrease in klotho, while physical exercise and certain genetic variations lead to a decrease in cortisol response and increased klotho. Here, we review the interrelated opposite actions of cortisol and klotho in the pathogenesis of PD. Together they impact powerful and divergent mechanisms that may go on to influence PD-related symptoms. Better understanding of these hormones in PD would facilitate the design of effective interventions that can simultaneously impact the multiple systems involved in the pathogenesis of PD.

19.
Front Neurol ; 13: 980935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324383

RESUMEN

Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.

20.
Trials ; 23(1): 855, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36203214

RESUMEN

BACKGROUND: To date, no medication has slowed the progression of Parkinson's disease (PD). Preclinical, epidemiological, and experimental data on humans all support many benefits of endurance exercise among persons with PD. The key question is whether there is a definitive additional benefit of exercising at high intensity, in terms of slowing disease progression, beyond the well-documented benefit of endurance training on a treadmill for fitness, gait, and functional mobility. This study will determine the efficacy of high-intensity endurance exercise as first-line therapy for persons diagnosed with PD within 3 years, and untreated with symptomatic therapy at baseline. METHODS: This is a multicenter, randomized, evaluator-blinded study of endurance exercise training. The exercise intervention will be delivered by treadmill at 2 doses over 18 months: moderate intensity (4 days/week for 30 min per session at 60-65% maximum heart rate) and high intensity (4 days/week for 30 min per session at 80-85% maximum heart rate). We will randomize 370 participants and follow them at multiple time points for 24 months. The primary outcome is the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score (Part III) with the primary analysis assessing the change in MDS-UPDRS motor score (Part III) over 12 months, or until initiation of symptomatic antiparkinsonian treatment if before 12 months. Secondary outcomes are striatal dopamine transporter binding, 6-min walk distance, number of daily steps, cognitive function, physical fitness, quality of life, time to initiate dopaminergic medication, circulating levels of C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF). Tertiary outcomes are walking stride length and turning velocity. DISCUSSION: SPARX3 is a Phase 3 clinical trial designed to determine the efficacy of high-intensity, endurance treadmill exercise to slow the progression of PD as measured by the MDS-UPDRS motor score. Establishing whether high-intensity endurance treadmill exercise can slow the progression of PD would mark a significant breakthrough in treating PD. It would have a meaningful impact on the quality of life of people with PD, their caregivers and public health. TRIAL REGISTRATION: ClinicalTrials.gov NCT04284436 . Registered on February 25, 2020.


Asunto(s)
Enfermedad de Parkinson , Antiparkinsonianos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo , Proteína C-Reactiva , Ensayos Clínicos Fase III como Asunto , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/uso terapéutico , Ejercicio Físico , Terapia por Ejercicio/métodos , Humanos , Estudios Multicéntricos como Asunto , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...