Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(2): 1185-1193, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36592344

RESUMEN

Direct functionalization of methane selectively to value-added chemicals is still one of the main challenges in modern science. Acetic acid is an important industrial chemical produced nowadays by expensive and environmentally unfriendly carbonylation of methanol using homogeneous catalysts. Here, we report a new photocatalytic reaction route to synthesize acetic acid from CH4 and CO at room temperature using water as the sole external oxygen source. The optimized photocatalyst consists of a TiO2 support and ammonium phosphotungstic polyoxometalate (NPW) clusters anchored with isolated Pt single atoms (Pt1). It enables a stable synthesis of 5.7 mmol·L-1 acetic acid solution in 60 h with the selectivity over 90% and 66% to acetic acid on liquid-phase and carbon basis, respectively, with the production of 99 mol of acetic acid per mol of Pt. Combined isotopic and in situ spectroscopy investigation suggests that synthesis of acetic acid proceeds via a photocatalytic oxidative carbonylation of methane over the Pt1 sites, with the methane activation facilitated by water-derived hydroxyl radicals.


Asunto(s)
Ácido Acético , Metano , Metano/química , Ácido Acético/química , Agua , Oxidantes , Temperatura
2.
Chem Soc Rev ; 51(18): 7994-8044, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36043509

RESUMEN

Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.


Asunto(s)
Dióxido de Carbono , Fósiles , Alcanos , Alquenos/química , Dióxido de Carbono/química , Metanol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA