Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 223(3): 1149-1164, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29094305

RESUMEN

Functional changes in hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels have been shown to contribute to medial prefrontal (mPFC) hyperexcitability after peripheral nerve injury. A reduction in the open probability of these neuronal channels might be relevant since this can enhance membrane input resistance and synaptic summation. However, the molecular mechanisms underlying neuropathy-associated alterations in HCN channel activity remain elusive. Using the spared nerve injury model of neuropathic pain in Long-Evans rats, we first discovered a significant increase in noradrenergic innervation within the mPFC of nerve-injured compared to control animals. Patch-clamp recordings in layer II/III pyramidal neurons of the mPFC revealed that adrenoceptors, primarily the α2 subtype, can modulate the voltage-dependent activation of HCN channels and the abnormal prefrontal excitability following peripheral neuropathy. Additionally, microinfusions of the α2 adrenoceptor agonist clonidine in the mPFC of neuropathic rats provided analgesic effects, indicating the behavioral significance for this noradrenergic pathway in manifestations of the chronic pain state. Taken together, our results provide insights into the role of cortical catecholaminergic neuromodulation in neuropathic pain and suggest that altered noradrenergic transduction may play a major role in the HCN channel dysfunction and pyramidal hyperactivity observed in several chronic pain conditions.


Asunto(s)
Fibras Nerviosas/fisiología , Neuralgia/patología , Norepinefrina/metabolismo , Percepción del Dolor/fisiología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Adrenérgicos/farmacología , Animales , Compuestos de Bario/farmacología , Cloruros/farmacología , Modelos Animales de Enfermedad , Dopamina beta-Hidroxilasa/metabolismo , Estimulación Eléctrica , Hiperalgesia/fisiopatología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Fibras Nerviosas/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Neuronas , Percepción del Dolor/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Long-Evans , Corteza Visual/patología
2.
J Neurosci ; 35(38): 13244-56, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26400952

RESUMEN

Neuropathic pain is a debilitating condition for which the development of effective treatments has been limited by an incomplete understanding of its molecular basis. The cationic current Ih mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels plays an important role in pain by facilitating ectopic firing and hyperexcitability in DRG neurons, however little is known regarding the role of Ih in supraspinal pain pathways. The medial prefrontal cortex (mPFC), which is reported to be involved in the affective aspects of pain, exhibits high HCN channel expression. Using the spared nerve injury (SNI) model of neuropathic pain in Long-Evans rats and patch-clamp recordings in layer II/III pyramidal neurons of the contralateral mPFC, we observed a hyperpolarizing shift in the voltage-dependent activation of Ih in SNI neurons, whereas maximal Ih remained unchanged. Accordingly, SNI mPFC pyramidal neurons exhibited increased input resistance and excitability, as well as facilitated glutamatergic mGluR5-mediated persistent firing, compared with sham neurons. Moreover, intracellular application of bromo-cAMP abolished the hyperpolarizing shift in the voltage-dependent activation of Ih observed in SNI neurons, whereas protein kinase A (PKA) inhibition further promoted this shift in both SNI and sham neurons. Behaviorally, acute HCN channel blockade by local injection of ZD7288 in the mPFC of SNI rats induced a decrease in cold allodynia. These findings suggest that changes in the cAMP/PKA axis in mPFC neurons underlie alterations to HCN channel function, which can influence descending inhibition of pain pathways in neuropathic conditions. Significance statement: Recent studies investigating the role of the medial prefrontal cortex (mPFC) in neuropathic pain have led to an increased awareness of how affective and cognitive factors can influence pain perception. It is therefore imperative that we advance our understanding of the involvement of supraspinal pain pathways. Our electrophysiological and behavioral results support an important role for hyperpolarization-activated cyclic nucleotide-gated channels and the cAMP/protein kinase A signaling axis in promoting hyperexcitability and persistent firing in pyramidal neurons of the mPFC in neuropathic animals. These findings offer novel insights, with potential therapeutic implications, into pathophysiological mechanisms underlying the abnormal contribution of layer II/III prefrontal pyramidal neurons to chronic pain states.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Neuralgia/metabolismo , Neuralgia/patología , Umbral del Dolor/fisiología , Corteza Prefrontal/patología , Células Piramidales/metabolismo , Animales , Fenómenos Biofísicos/efectos de los fármacos , Modelos Animales de Enfermedad , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/fisiología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Dimensión del Dolor , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Pirimidinas/farmacología , Ratas , Ratas Long-Evans , Bloqueadores de los Canales de Sodio/farmacología , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/fisiología , Tetrodotoxina/farmacología
3.
PLoS One ; 8(6): e66122, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785477

RESUMEN

Optimal norepinephrine levels in the prefrontal cortex (PFC) increase delay-related firing and enhance working memory, whereas stress-related or pathologically high levels of norepinephrine are believed to inhibit working memory via α1 adrenoceptors. However, it has been shown that activation of Gq-coupled and phospholipase C-linked receptors can induce persistent firing, a cellular correlate of working memory, in cortical pyramidal neurons. Therefore, despite its importance in stress and cognition, the exact role of norepinephrine in modulating PFC activity remains elusive. Using electrophysiology and optogenetics, we report here that norepinephrine induces persistent firing in pyramidal neurons of the PFC independent of recurrent fast synaptic excitation. This persistent excitatory effect involves presynaptic α1 adrenoceptors facilitating glutamate release and subsequent activation of postsynaptic mGluR5 receptors, and is enhanced by postsynaptic α2 adrenoceptors inhibiting HCN channel activity. Activation of α2 adrenoceptors or inhibition of HCN channels also enhances cholinergic persistent responses in pyramidal neurons, providing a mechanism of crosstalk between noradrenergic and cholinergic inputs. The present study describes a novel cellular basis for the noradrenergic control of cortical information processing and supports a synergistic combination of intrinsic and network mechanisms for the expression of mnemonic properties in pyramidal neurons.


Asunto(s)
Agonistas alfa-Adrenérgicos/farmacología , Norepinefrina/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Ácido Glutámico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Terminales Presinápticos/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas , Receptores de Ácido Kaínico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA