Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(15): 3299-3312, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38529796

RESUMEN

Material relationships at low temperatures were determined for concentrated surfactant solutions using a combination of rheological experiments, cross-polarized microscopy, calorimetry, and small angle X-ray scattering. A lamellar structured 70 wt% solution of sodium laureth sulfate in water was used as a model system. At cold temperatures (5 °C and 10 °C), the formation of surfactant crystals resulted in extremely high viscosity. The bulk flow behavior of multi-lamellar vesicles (20 °C) and focal conic defects (90 °C) in the lamellar phase was similar. Shear-induced crystallization at temperatures higher than the equilibrium crystallization temperature range resulted in an unusual complex viscosity peak. The effects of processing-relevant parameters including temperature, cooling time, and applied shear were investigated. Knowledge of key low-temperature structure-property-processing relationships for concentrated feedstocks is essential for the sustainable design and manufacturing of surfactant-based consumer products for applications such as cold-water laundry.

2.
Soft Matter ; 20(4): 856-868, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38170854

RESUMEN

While significant progress has been made in the modeling and simulation of uniform fiber suspensions, no existing model has been validated for industrially-relevant concentrated suspensions containing fibers of multiple aspect ratios. In the present work, we investigate bi-disperse suspensions with two fiber populations in varying aspect ratios in a steady shear flow using direct numerical simulations. Moreover, we measure the suspension viscosity by creating a controlled length bidispersity for nylon fibers suspended in a Newtonian fluid. The results showed good agreement between the experimentally measured and numerically predicted viscosity for bi-disperse suspensions. The ratio between the aspect ratio of large to small fibers (size ratio) and the volume fraction of large fibers (composition) in bi-disperse systems strongly affected the rheological behavior of the suspension. The increment of relative viscosity associated with size ratio and composition can be explained by the decrease in the maximum flowable limit or jamming volume fraction. Moreover, the relative viscosity of bi-disperse suspensions collapses, when plotted against the reduced volume fraction, demonstrating the controlling influence of the jamming fraction in bi-disperse fiber suspensions.

3.
Biomater Sci ; 11(6): 2186-2199, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36744734

RESUMEN

Extracellular matrix (ECM) rigidity has been shown to increase the invasive properties of breast cancer cells, promoting transformation and metastasis through mechanotransduction. Reducing ECM stiffness via enzymatic digestion could be a promising approach to slowing breast cancer development by de-differentiation of breast cancer cells to less aggressive phenotypes and enhancing the effectiveness of existing chemotherapeutics via improved drug penetrance throughout the tumor. In this study, we examine the effects of injectable liberase (a blend of collagenase and thermolysin enzymes) treatments on the linear and nonlinear rheology of allograft 4T1 mouse mammary tumors. We perform two sets of in vivo mouse studies, in which either one or multiple treatment injections occur before the tumors are harvested for rheological analysis. The treatment groups in each study consist of a buffer control, free liberase enzyme in buffer, a thermoresponsive copolymer called LiquoGel (LQG) in buffer, and a combined, localized injection of LQG and liberase. All tumor samples exhibit gel-like linear rheological behavior with the elastic modulus significantly larger than the viscous modulus and both independent of frequency. Tumors that receive a single injection of localized liberase have significantly lower tumor volumes and lower tissue moduli at both the center and edge compared to buffer- and free liberase-injected control tumors, while tissue viscoelasticity remains relatively unaffected. Tumors injected multiple times with LQG and liberase also have lower tissue volumes but possess higher tissue moduli and lower viscoelasticities compared to the other treatment groups. We propose that a mechanotransductive mechanism could cause the formation of smaller but stiffer tumors after repeated, localized liberase injections. Large amplitude oscillatory shear (LAOS) experiments are also performed on tissues from the multiple injection study and the results are analyzed using MITlaos. LAOS analysis reveals that all 4T1 tumors from the multiple injection study exhibit nonlinear rheological behavior at high strains and strain rates. Examination of the Lissajous-Bowditch curves, Chebyshev coefficient ratios, elastic moduli, and dynamic viscosities demonstrate that the onset and type of nonlinear behavior is independent of treatment type and elastic modulus, suggesting that multiple liberase injections do not affect the nonlinear viscoelasticity of 4T1 tumors.


Asunto(s)
Mecanotransducción Celular , Neoplasias , Ratones , Animales , Termolisina/metabolismo , Colagenasas/metabolismo , Reología
4.
Soft Matter ; 19(5): 882-891, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645088

RESUMEN

Concentrated suspensions of particles at volume fractions (ϕ) ≥ 0.5 often exhibit complex rheological behavior, transitioning from shear thinning to shear thickening as the shear stress or shear rate is increased. These suspensions can be extruded to form 3D structures, with non-adsorbing polymers often added as rheology modifiers to improve printability. Understanding how non-adsorbing polymers affect the suspension rheology, particularly the onset of shear thickening, is critical to the design of particle inks that will extrude uniformly. In this work, we examine the rheology of concentrated aqueous suspensions of colloidal alumina particles and the effects of adding non-adsorbing polyvinylpyrrolidone (PVP). First, we show that suspensions with ϕalumina = 0.560-0.575 exhibited discontinuous shear thickening (DST), where the viscosity increased by up to two orders of magnitude above an onset stress (τmin). Increasing ϕalumina from 0.550 to 0.575 increased the viscosity and yield stress in the shear thinning regime and decreased τmin. Next, PVP was added at concentrations within the dilute and semi-dilute non-entangled regimes of polymer conformation (ϕPVP = 0.005-0.050) to suspensions with constant ϕalumina = 0.550. DST was observed in all cases and increasing ϕPVP increased the viscosity and yield stress. Interestingly, increasing ϕPVP also increased τmin. We posit that the free PVP chains act as lubricants between alumina particles, increasing the stress needed to induce thickening. Finally, we demonstrate through direct comparisons of suspensions with and without PVP how non-adsorbing polymer addition can extend the extrusion processing window due to the increase in τmin.

5.
ACS Appl Mater Interfaces ; 13(43): 51403-51413, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34664928

RESUMEN

Binding agents are a critical component of Si-based anodes for lithium-ion batteries. Herein, we introduce a composite hydrogel binder consisting of carbon black (CB) and guar, which is chemically cross-linked with glutaraldehyde as a means to reinforce the electrode structure during lithiation and improve electronic conductivity. Dynamic rheological measurements are used to monitor the cross-linking reaction and show that rheology plays a significant role in binder performance. The cross-linking reaction occurs at a faster rate and produces stronger networks in the presence of CB, as evidenced from higher gel elastic modulus in guar + CB gels than guar gels alone. Silicon nanoparticle (SiNP) electrodes that use binders with low cross-link densities (trxn < 2 days) demonstrate discharge capacities ∼1200 mAh g-1 and Coulombic efficiencies >99.8% after 300 cycles at 1-C rate. Low cross-link densities likely increase the capacity of SiNP anodes because of binder-Si hydrogen-bonding interactions that accommodate volume expansions. In addition, the cross-linked binder demonstrates the potential for self-healing, as evidenced by an increased elastic modulus after the gel was mechanically fragmented, which may preserve the electrode microstructure during lithiation and increase capacity retention. The composite hydrogel with integrated conductive additives gives promise to a new type of binder for next-generation lithium-ion batteries.

6.
Acta Biomater ; 134: 443-452, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34371168

RESUMEN

Uterine fibroids are stiff, benign tumors containing excessive, disordered collagens that occur in 70-80% of women before age 50 and cause bleeding and pain. Collagenase Clostridium histolyticum (CCH) is a bacterial enzyme capable of digesting the collagens present in fibroids. By combining CCH with injectable drug delivery systems to enhance effectiveness, a new class of treatments could be developed to reduce the stiffness of fibroids, preventing the need for surgical removal and preserving fertility. In this work, we achieved localization of CCH via physical entrapment by co-injecting a thermoresponsive pNIPAM-based polymeric delivery system called LiquoGel (LQG), which undergoes a sol-gel transition upon heating. Toxicity study results for LQG injected subcutaneously into mice demonstrate that LQG does not induce lesions or other adverse effects. We then used rheology to quantify the effects of localized CCH injections on the modulus and viscoelasticity of uterine fibroids, which exhibit gel-like behavior, through ex vivo and in vivo digestion studies. Ex vivo CCH injections reduce the tissue modulus by over two orders of magnitude and co-injection of LQG enhances this effect. Rheological results from an in vivo digestion study in mice show a significant reduction in tissue modulus and increase in tissue viscoelasticity 7 days after a single injection of LQG+CCH. Parallel histological staining validates that the observed rheological changes correspond to an increase in collagen lysis after treatment by LQG+CCH. These results show promise for development of injectable and localized enzymatic therapies for uterine fibroids and other dense tumors. STATEMENT OF SIGNIFICANCE: Uterine fibroids are stiff, benign tumors containing high collagen levels that cause bleeding and pain in women. Fertility-preserving and minimally-invasive treatments to soften fibroids are needed as an alternative to surgical removal via hysterectomy. We demonstrate through ex vivo and in vivo studies that co-injecting a thermoresponsive polymer delivery system (LQG) alongside a bacterial collagenase (CCH) enzyme significantly increases treatment effectiveness at softening fibroids through CCH localization. We use rheology to measure the modulus and viscoelasticity of fibroids and histology to show that fibroid softening corresponds to a decrease in collagen after treatment with LQG+CCH. These results highlight the utility of rheology at quantifying tissue properties and present a promising injectable therapy for fibroids and other dense tumors.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Animales , Colagenasas , Digestión , Femenino , Humanos , Leiomioma/tratamiento farmacológico , Ratones , Reología , Resultado del Tratamiento
7.
Soft Matter ; 16(37): 8602-8611, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32845269

RESUMEN

Nanomaterials are regularly added to crosslinkable polymers to enhance mechanical properties; however, important effects related to gelation behavior and crosslinking kinetics are often overlooked. In this study, we combine cellulose nanocrystals (CNCs) with a photoactive poly(vinyl alcohol) derivative, PVA-SbQ, to form photocrosslinked nanocomposite hydrogels. We investigate the rheology of PVA-SbQ with and without CNCs to decipher the role of each component in final property development and identify a critical CNC concentration (1.5 wt%) above which several changes in rheological behavior are observed. Neat PVA-SbQ solutions exhibit Newtonian flow behavior across all concentrations, while CNC dispersions are shear-thinning <6 wt% and gel at high concentrations. Combining semi-dilute entangled PVA-SbQ (6 wt%) with >1.5 wt% CNCs forms a percolated microstructure. In situ photocrosslinking experiments reveal how CNCs affect both the gelation kinetics and storage modulus (G') of the resulting hydrogels. The modulus crossover time increases after addition of up to 1.5 wt% CNCs, while no modulus crossover is observed >1.5 wt% CNCs. A sharp increase in G' is observed >1.5 wt% CNCs for fully-crosslinked networks due to favorable PVA-SbQ/CNC interactions. A percolation model is fitted to the G' data to confirm that mechanical percolation is maintained after photocrosslinking. A ∼120% increase in G' for 2.5 wt% CNCs (relative to neat PVA-SbQ) confirms that CNCs provide a reinforcing effect through the percolated microstructure formed from PVA-SbQ/CNC interactions. The results are testament to the ability of CNCs to significantly alter the storage moduli of crosslinked polymer gels at low loading fractions through percolation-induced reinforcement.

8.
ACS Nano ; 12(3): 2466-2473, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29455516

RESUMEN

A bioinspired glucose-responsive insulin delivery system for self-regulation of blood glucose levels is desirable for improving health and quality of life outcomes for patients with type 1 and advanced type 2 diabetes. Here we describe a painless core-shell microneedle array patch consisting of degradable cross-linked gel for smart insulin delivery with rapid responsiveness and excellent biocompatibility. This gel-based device can partially dissociate and subsequently release insulin when triggered by hydrogen peroxide (H2O2) generated during the oxidation of glucose by a glucose-specific enzyme covalently attached inside the gel. Importantly, the H2O2-responsive microneedles are coated with a thin-layer embedding H2O2-scavenging enzyme, thus mimicking the complementary function of enzymes in peroxisomes to protect normal tissues from injury caused by oxidative stress. Utilizing a chemically induced type 1 diabetic mouse model, we demonstrated that this smart insulin patch with a bioresponsive core and protective shell could effectively regulate the blood glucose levels within a normal range with improved biocompatibility.


Asunto(s)
Preparaciones de Acción Retardada/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/instrumentación , Hidrogeles/metabolismo , Peróxido de Hidrógeno/metabolismo , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Animales , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/metabolismo , Enzimas Inmovilizadas/metabolismo , Diseño de Equipo , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Agujas , Parche Transdérmico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...