Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(11): e10778, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034327

RESUMEN

Predictive models can improve the efficiency of wildlife management by guiding actions at the local, landscape and regional scales. In recent decades, a vast range of modelling techniques have been developed to predict species distributions and patterns of population spread. However, data limitations often constrain the precision and biological realism of models, which make them less useful for supporting decision-making. Complex models can also be challenging to evaluate, and the results are often difficult to interpret for wildlife management practitioners. There is therefore a need to develop techniques that are appropriately robust, but also accessible to a range of end users. We developed a hybrid species distribution model that utilises commonly available presence-only distribution data and minimal demographic information to predict the spread of roe deer (Capreolus caprelous) in Great Britain. We take a novel approach to representing the environment in the model by constraining the size of habitat patches to the home-range area of an individual. Population dynamics are then simplified to a set of generic rules describing patch occupancy. The model is constructed and evaluated using data from a populated region (England and Scotland) and applied to predict regional-scale patterns of spread in a novel region (Wales). It is used to forecast the relative timing of colonisation events and identify important areas for targeted surveillance and management. The study demonstrates the utility of presence-only data for predicting the spread of animal species and describes a method of reducing model complexity while retaining important environmental detail and biological realism. Our modelling approach provides a much-needed opportunity for users without specialist expertise in computer coding to leverage limited data and make robust, easily interpretable predictions of spread to inform proactive population management.

2.
Sci Rep ; 12(1): 22008, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550171

RESUMEN

For large herbivores living in highly dynamic environments, maintaining range fidelity has the potential to facilitate the exploitation of predictable resources while minimising energy expenditure. We evaluate this expectation by examining how the seasonal range fidelity of African elephants (Loxodonta africana) in the Kruger National Park, South Africa is affected by spatiotemporal variation in environmental conditions (vegetation quality, temperature, rainfall, and fire). Eight-years of GPS collar data were used to analyse the similarity in seasonal utilisation distributions for thirteen family groups. Elephants exhibited remarkable consistency in their seasonal range fidelity across the study with rainfall emerging as a key driver of space-use. Within years, high range fidelity from summer to autumn and from autumn to winter was driven by increased rainfall and the retention of high-quality vegetation. Across years, sequential autumn seasons demonstrated the lowest levels of range fidelity due to inter-annual variability in the wet to dry season transition, resulting in unpredictable resource availability. Understanding seasonal space use is important for determining the effects of future variability in environmental conditions on elephant populations, particularly when it comes to management interventions. Indeed, over the coming decades climate change is predicted to drive greater variability in rainfall and elevated temperatures in African savanna ecosystems. The impacts of climate change also present particular challenges for elephants living in fragmented or human-transformed habitats where the opportunity for seasonal range shifts are greatly constrained.


Asunto(s)
Elefantes , Incendios , Animales , Humanos , Ecosistema , Estaciones del Año , Elefantes/fisiología , Sudáfrica
3.
PLoS One ; 17(6): e0267385, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35687554

RESUMEN

INTRODUCTION: Over recent decades, the abundance and geographic ranges of wild ungulate species have expanded in many parts of Europe, including the UK. Populations are managed to mitigate their ecological impacts using interventions, such as shooting, fencing and administering contraception. Predicting how target species will respond to interventions is critical for developing sustainable, effective and efficient management strategies. However, the quantity and quality of evidence of the effects of interventions on ungulate species is unclear. To address this, we systematically mapped research on the effects of population management on wild ungulate species resident in the UK. METHODS: We searched four bibliographic databases, Google Scholar and nine organisational websites using search terms tested with a library of 30 relevant articles. Worldwide published peer-reviewed articles were considered, supplemented by 'grey' literature from UK-based sources. Three reviewers identified and screened articles for eligibility at title, abstract and full-text levels, based on predefined criteria. Data and metadata were extracted and summarised in a narrative synthesis supported by structured graphical matrices. RESULTS: A total of 123 articles were included in the systematic map. Lethal interventions were better represented (85%, n = 105) than non-lethal interventions (25%, n = 25). Outcomes related to demography and behaviour were reported in 95% of articles (n = 117), whereas effects on health, physiology and morphology were studied in only 11% of articles (n = 14). Well-studied species included wild pigs (n = 58), red deer (n = 28) and roe deer (n = 23). CONCLUSIONS: Evidence for the effects of population management on wild ungulate species is growing but currently limited and unevenly distributed across intervention types, outcomes and species. Priorities for primary research include: species responses to non-lethal interventions, the side-effects of shooting and studies on sika deer and Chinese muntjac. Shooting is the only intervention for which sufficient evidence exists for systematic review or meta-analysis.


Asunto(s)
Ciervos , Animales , Europa (Continente) , Reino Unido
4.
Animals (Basel) ; 12(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35203203

RESUMEN

The transmission of reliable information between individuals is crucial for group-living animals. This is particularly the case for cognitively advanced mammals with overlapping generations that acquire detailed social and ecological knowledge over long lifetimes. Here, we directly compare the ecological knowledge of elephants from two populations, with radically different developmental histories, to test whether profound social disruption affects their ability to assess predatory threat. Matriarchs (≤50 years of age) and their family groups received playbacks of three lions versus a single lion roaring. The family groups in the natural Amboseli population (Kenya) reliably assessed the greater predatory threat presented by three lions roaring versus one. However, in the socially disrupted Pilanesberg population (South Africa), no fine-scale distinctions were made between the numbers of roaring lions. Our results suggest that the removal of older and more experienced individuals in highly social species, such as elephants, is likely to impact the acquisition of ecological knowledge by younger group members, particularly through the lack of opportunity for social learning and cultural transmission of knowledge. This is likely to be exacerbated by the trauma experienced by juvenile elephants that witnessed the culling of family members and were translocated to new reserves. With increasing levels of anthropogenic disturbance, it is important that conservation practitioners consider the crucial role that population structure and knowledge transfer plays in the functioning and resilience of highly social and long-lived species.

5.
Biol Lett ; 17(10): 20210368, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610251

RESUMEN

Sexual size dimorphism (SSD) is a common morphological trait in ungulates, with polygyny considered the leading driver of larger male body mass and weapon size. However, not all polygynous species exhibit SSD, while molecular evidence has revealed a more complex relationship between paternity and mating system than originally predicted. SSD is, therefore, likely to be shaped by a range of social, ecological and physiological factors. We present the first definitive analysis of SSD in the common hippopotamus (Hippopotamus amphibius) using a unique morphological dataset collected from 2994 aged individuals. The results confirm that hippos exhibit SSD, but the mean body mass differed by only 5% between the sexes, which is rather limited compared with many other polygynous ungulates. However, jaw and canine mass are significantly greater in males than females (44% and 81% heavier, respectively), highlighting the considerable selection pressure for acquiring larger weapons. A predominantly aquatic lifestyle coupled with the physiological limitations of their foregut fermenting morphology likely restricts body size differences between the sexes. Indeed, hippos appear to be a rare example among ungulates whereby sexual selection favours increased weapon size over body mass, underlining the important role that species-specific ecology and physiology have in shaping SSD.


Asunto(s)
Matrimonio , Caracteres Sexuales , Animales , Tamaño Corporal , Perros , Femenino , Masculino , Mamíferos , Fenotipo , Reproducción
6.
Proc Natl Acad Sci U S A ; 117(30): 18119-18126, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32631981

RESUMEN

Seasonal environmental conditions shape the behavior and life history of virtually all organisms. Climate change is modifying these seasonal environmental conditions, which threatens to disrupt population dynamics. It is conceivable that climatic changes may be beneficial in one season but result in detrimental conditions in another because life-history strategies vary between these time periods. We analyzed the temporal trends in seasonal survival of yellow-bellied marmots (Marmota flaviventer) and explored the environmental drivers using a 40-y dataset from the Colorado Rocky Mountains (USA). Trends in survival revealed divergent seasonal patterns, which were similar across age-classes. Marmot survival declined during winter but generally increased during summer. Interestingly, different environmental factors appeared to drive survival trends across age-classes. Winter survival was largely driven by conditions during the preceding summer and the effect of continued climate change was likely to be mainly negative, whereas the likely outcome of continued climate change on summer survival was generally positive. This study illustrates that seasonal demographic responses need disentangling to accurately forecast the impacts of climate change on animal population dynamics.


Asunto(s)
Cambio Climático , Hibernación , Mamíferos , Estaciones del Año , Animales , Demografía , Ambiente , Mortalidad , Dinámica Poblacional
7.
Sci Rep ; 9(1): 1767, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741983

RESUMEN

Estimates of temporal variation in demographic rates are critical for identifying drivers of population change and supporting conservation. However, for inconspicuous wide-ranging species, births may be missed and fecundity rates underestimated. We address this issue using photo-identification data and a novel robust design multistate model to investigate changes in bottlenose dolphin fecundity and calf survival. The model allows for uncertainty in breeding status, and seasonal effects. The best model estimated an increase in the proportion of females with newborn calves from 0.16 (95% CI = 0.11-0.24) in 2001 to 0.28 (95% CI = 0.22-0.36) in 2016. First year calf survival also increased over this period from 0.78 (95% CI = 0.53-0.92) to 0.93 (95% CI = 0.82-0.98). Second year calf survival remained lower, but also showed an increase from 0.32 (95% CI = 0.19-0.48) to 0.55 (95% CI = 0.44-0.65). Females with newborn calves had a slightly higher mortality than those with older calves, but further work is required to evaluate potential costs of reproduction. This study presents a rare example of empirical evidence of a positive trend in reproduction and survival for a cetacean population using a Marine Protected Area.


Asunto(s)
Delfín Mular , Conservación de los Recursos Naturales/tendencias , Fertilidad , Modelos Teóricos , Algoritmos , Animales , Ambiente , Femenino , Masculino , Biología Marina , Reproducción , Estaciones del Año
8.
Ecol Evol ; 7(6): 1725-1736, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28331583

RESUMEN

Climate change is having profound impacts on animal populations, and shifts in geographic range are predicted in response. Shifts that result in range overlap between previously allopatric congeneric species may have consequences for biodiversity through interspecific competition, hybridization, and genetic introgression. Harbor seals (Phoca vitulina) and spotted seals (Phoca largha) are parapatric sibling species and areas of co-occurrence at the edges of their range, such as Bristol Bay, Alaska, offer a unique opportunity to explore ecological separation and discuss potential consequences of increased range overlap resulting from retreating sea ice. Using telemetry and genetic data from 14 harbor seals and six spotted seals, we explored the ecological and genetic separation of the two species by comparing their utilization distributions, distance from haul-out, dive behavior (e.g., depth, duration, focus), and evidence of hybridization. Firstly, we show that harbor and spotted seals, which cannot be visually distinguished definitively in all cases, haul-out together side by side in Bristol Bay from late summer to early winter. Secondly, we observed subtle rather than pronounced differences in ranging patterns and dive behavior during this period. Thirdly, most spotted seals in this study remained close to shore in contrast to what is known of the species in more northern areas, and lastly, we did not find any evidence of hybridization. The lack of distinct ecological separation in this area of sympatry suggests that interspecific competition could play an important role in the persistence of these species, particularly if range overlap will increase as a result of climate-induced range shifts and loss of spotted seal pagophilic breeding habitat. Our results also highlight the added complexities in monitoring these species in areas of suspected overlap, as they cannot easily be distinguished without genetic analysis. Predicted climate-induced environmental change will likely influence the spatial and temporal extent of overlap in these two sibling species. Ultimately, this may alter the balance between current isolating mechanisms with consequences for species integrity and fitness.

9.
PLoS One ; 9(4): e94630, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718624

RESUMEN

Human activities in protected areas can affect wildlife populations in a similar manner to predation risk, causing increases in movement and vigilance, shifts in habitat use and changes in group size. Nevertheless, recent evidence indicates that in certain situations ungulate species may actually utilize areas associated with higher levels of human presence as a potential refuge from disturbance-sensitive predators. We now use four-years of behavioral activity budget data collected from pronghorn (Antilocapra americana) and elk (Cervus elephus) in Grand Teton National Park, USA to test whether predictable patterns of human presence can provide a shelter from predatory risk. Daily behavioral scans were conducted along two parallel sections of road that differed in traffic volume--with the main Teton Park Road experiencing vehicle use that was approximately thirty-fold greater than the River Road. At the busier Teton Park Road, both species of ungulate engaged in higher levels of feeding (27% increase in the proportion of pronghorn feeding and 21% increase for elk), lower levels of alert behavior (18% decrease for pronghorn and 9% decrease for elk) and formed smaller groups. These responses are commonly associated with reduced predatory threat. Pronghorn also exhibited a 30% increase in the proportion of individuals moving at the River Road as would be expected under greater exposure to predation risk. Our findings concur with the 'predator shelter hypothesis', suggesting that ungulates in GTNP use human presence as a potential refuge from predation risk, adjusting their behavior accordingly. Human activity has the potential to alter predator-prey interactions and drive trophic-mediated effects that could ultimately impact ecosystem function and biodiversity.


Asunto(s)
Antílopes/fisiología , Ciervos/fisiología , Actividades Humanas , Conducta Predatoria/fisiología , Animales , Humanos , Wyoming
10.
Ecol Evol ; 3(12): 4215-20, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24324871

RESUMEN

In capture-recapture studies, the estimation accuracy of demographic parameters is essential to the efficacy of management of hunted animal populations. Dead recovery models based upon the reporting of rings or bands are often used for estimating survival of waterfowl and other harvested species. However, distance from the ringing site or condition of the bird may introduce substantial individual heterogeneity in the conditional band reporting rates (r), which could cause bias in estimated survival rates (S) or suggest nonexistent individual heterogeneity in S. To explore these hypotheses, we ran two sets of simulations (n = 1000) in MARK using Seber's dead recovery model, allowing time variation on both S and r. This included a series of heterogeneity models, allowing substantial variation on logit(r), and control models with no heterogeneity. We conducted simulations using two different values of S: S = 0.60, which would be typical of dabbling ducks such as mallards (Anas platyrhynchos), and S = 0.80, which would be more typical of sea ducks or geese. We chose a mean reporting rate on the logit scale of -1.9459 with SD = 1.5 for the heterogeneity models (producing a back-transformed mean of 0.196 with SD = 0.196, median = 0.125) and a constant reporting rate for the control models of 0.196. Within these sets of simulations, estimation models where σS = 0 and σS > 0 (σS is SD of individual survival rates on the logit scale) were incorporated to investigate whether real heterogeneity in r would induce apparent individual heterogeneity in S. Models where σS = 0 were selected approximately 91% of the time over models where σS > 0. Simulation results showed < 0.05% relative bias in estimating survival rates except for models estimating σS > 0 when true S = 0.8, where relative bias was a modest 0.5%. These results indicate that considerable variation in reporting rates does not cause major bias in estimated survival rates of waterfowl, further highlighting the robust nature of dead recovery models that are being used for the management of harvested species.

11.
Proc Biol Sci ; 280(1764): 20130847, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23782881

RESUMEN

Phenological trends provide important indicators of environmental change and population dynamics. However, the use of untested population-level measures can lead to incorrect conclusions about phenological trends, particularly when changes in population structure or density are ignored. We used individual-based estimates of birth date and lactation duration of harbour seals (Phoca vitulina) to investigate energetic consequences of changes in pupping phenology. Using generalized linear mixed models, we first demonstrate annual variation in pupping phenology. Second, we show a negative relationship between lactation duration and the timing of pupping, indicating that females who pup early nurse their pups longer, thereby highlighting lactation duration as a useful proxy of female condition and resource availability. Third, individual-based data were used to derive a population-level proxy that demonstrated an advance in pupping date over the last 25 years, co-incident with a reduction in population abundance that resulted from fisheries-related shootings. These findings demonstrate that phenological studies examining the impacts of climate change on mammal populations must carefully control for changes in population density and highlight how joint investigations of phenological and demographic change provide insights into the drivers of population declines.


Asunto(s)
Lactancia , Phoca/fisiología , Reproducción , Animales , Animales Recién Nacidos , Recolección de Datos , Femenino , Densidad de Población , Dinámica Poblacional , Escocia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...