Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 30(6): e02121, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32159897

RESUMEN

The eelgrass Zostera marina is an important foundation species of coastal areas in the Northern Hemisphere, but is continuing to decline, despite management actions. The development of new management tools is therefore urgent in order to prioritize limited resources for protecting meadows most vulnerable to local extinctions and identifying most valuable present and historic meadows to protect and restore, respectively. We assessed 377 eelgrass meadows along the complex coastlines of two fjord regions on the Swedish west coast-one is currently healthy and the other is substantially degraded. Shoot dispersal for all meadows was assessed with Lagrangian biophysical modeling (scale: 100-1,000 m) and used for barrier analysis and clustering; a subset (n = 22) was also assessed with population genetic methods (20 microsatellites) including diversity, structure, and network connectivity. Both approaches were in very good agreement, resulting in seven subpopulation groupings or management units (MUs). The MUs correspond to a spatial scale appropriate for coastal management of "waterbodies" used in the European Water Framework Directive. Adding demographic modeling based on the genetic and biophysical data as a third approach, we are able to assess past, present, and future metapopulation dynamics to identify especially vulnerable and valuable meadows. In a further application, we show how the biophysical approach, using eigenvalue perturbation theory (EPT) and distribution records from the 1980s, can be used to identify lost meadows where restoration would best benefit the present metapopulation. The combination of methods, presented here as a toolbox, allows the assessment of different temporal and spatial scales at the same time, as well as ranking of specific meadows according to key genetic, demographic and ecological metrics. It could be applied to any species or region, and we exemplify its versatility as a management guide for eelgrass along the Swedish west coast.


Asunto(s)
Ecosistema , Zosteraceae , Demografía , Repeticiones de Microsatélite , Suecia , Zosteraceae/genética
2.
Mol Ecol ; 26(17): 4452-4466, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28626905

RESUMEN

Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Ecosistema , Gadus morhua/genética , Flujo Génico , Animales , Océano Atlántico , Estuarios , Reordenamiento Génico , Genoma , Polimorfismo de Nucleótido Simple , Países Escandinavos y Nórdicos
3.
Ambio ; 42(4): 455-63, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23619803

RESUMEN

A particle-tracking model based on high-resolution ocean flow data was used to investigate particle residence times and spatial distribution of settling sediment for two geo-morphologically different Swedish coastal areas. The study was a part of a safety assessment for the location of a future nuclear-waste repository, and information about the particle-transport patterns can contribute to predictions of the fate of a possible leakage. It is also, to our knowledge, the first time particle-transport differences between two coastal areas have been quantified in this manner. In Forsmark, a funnel-shaped bay shielded by a number of islands, the average residence time for clay particles was 5 times longer than in the modeled part of Simpevarp, which is open to the Baltic Sea. In Forsmark, <10 % of the released particles left the domain compared to 60-80 % in Simpevarp. These site-specific differences will increase over time with the differences in land uplift between the areas.


Asunto(s)
Agua de Mar , Contaminantes del Agua/química , Países Bálticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...