Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 19(20): 7242-7259, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37796868

RESUMEN

The calculation of the origin-independent density of the dynamic electric dipole polarizability, previously presented for uncorrelated and density functional theory (DFT)-based methods, has been developed and implemented at the coupled cluster singles and doubles (CCSD) level of theory. A pointwise analysis of polarizability densities calculated for a number of molecules at Hartree-Fock (HF) and CCSD clearly shows that the electron correlation effect is much larger than one would argue considering the integrated dipole electric polarizability alone. Large error compensations occur during the integration process, which hide fairly large deviations mainly located in the internuclear regions. The same is observed when calculated CCSD and B3LYP polarizability densities are compared, with the remarkable feature that positive/negative deviations between CCSD and HF reverse sign, becoming negative/positive when comparing CCSD to B3LYP.

2.
J Phys Chem A ; 125(1): 243-250, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33355445

RESUMEN

The UV-vis absorption and magnetic circular dichroism spectra of naphthalene and some of its derivatives have been simulated at the Coupled Cluster Singles and Approximate Doubles (CC2) level of theory, and at the Time-Dependent Density Functional Theory (TD-DFT) level using the B3LYP and CAM-B3LYP functionals. DFT and CC2 predict in general opposite energetic ordering of the Lb and La transitions (in gas phase), as previously observed in adenine. The CC2 simulations of UV and MCD spectra show the best agreement with the experimental data. Analysis of the Cartesian components of the electric dipole transition strengths and the magnetic dipole transition moment between the excited states have been considered in the interpretation of the electronic transitions and the Faraday B term inversion among the naphthalene derivatives.

3.
J Chem Phys ; 153(11): 114105, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32962374

RESUMEN

A computational expression for the Faraday A term of magnetic circular dichroism (MCD) is derived within coupled cluster response theory and alternative computational expressions for the B term are discussed. Moreover, an approach to compute the (temperature-independent) MCD ellipticity in the context of coupled cluster damped response is presented, and its equivalence with the stick-spectrum approach in the limit of infinite lifetimes is demonstrated. The damped response approach has advantages for molecular systems or spectral ranges with a high density of states. Illustrative results are reported at the coupled cluster singles and doubles level and compared to time-dependent density functional theory results.

4.
Phys Rev Lett ; 124(23): 236001, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32603165

RESUMEN

Resonant inelastic x-ray scattering (RIXS) provides remarkable opportunities to interrogate ultrafast dynamics in liquids. Here we use RIXS to study the fundamentally and practically important hydroxyl radical in liquid water, OH(aq). Impulsive ionization of pure liquid water produced a short-lived population of OH(aq), which was probed using femtosecond x-rays from an x-ray free-electron laser. We find that RIXS reveals localized electronic transitions that are masked in the ultraviolet absorption spectrum by strong charge-transfer transitions-thus providing a means to investigate the evolving electronic structure and reactivity of the hydroxyl radical in aqueous and heterogeneous environments. First-principles calculations provide interpretation of the main spectral features.

5.
Photochem Photobiol Sci ; 16(9): 1415-1423, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28745752

RESUMEN

The excited electronic states of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the time-dependent density functional theory level. Special attention has been paid to solvent effects, included by a mixed discrete/continuum model, and to determining how our results depend on the adopted DFT functional (CAM-B3LYP and B3LYP). Whereas including solvent effects does not dramatically impact the MCD and OPA spectra, though improving the agreement with the experimental spectra, the performances of CAM-B3LYP and B3LYP are remarkably different. CAM-B3LYP captures well the effect of thionation on the uracil excited states and provides spectra in good agreement with the experiments, whereas B3LYP shows some deficiency in describing 2-TU and 2,4-DTU spectra, despite being more accurate than CAM-B3LYP for 4-TU.

6.
Nat Commun ; 8(1): 29, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642477

RESUMEN

Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. High-level-coupled cluster calculations confirm the method's impressive electronic structure sensitivity for excited-state investigations.Many photo-induced processes such as photosynthesis occur in organic molecules, but their femtosecond excited-state dynamics are difficult to track. Here, the authors exploit the element and site selectivity of soft X-ray absorption to sensitively follow the ultrafast ππ*/nπ* electronic relaxation of hetero-organic molecules.

7.
J Chem Phys ; 133(16): 164112, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21033780

RESUMEN

Recently, we have implemented a scheme for the calculation of the adiabatic connection linking the Kohn-Sham system to the physical, interacting system. This scheme uses a generalized Lieb functional, in which the electronic interaction strength is varied in a simple linear fashion, keeping the potential or the density fixed in the process. In the present work, we generalize this scheme further to accommodate arbitrary two-electron operators, allowing the calculation of adiabatic connections following alternative paths as outlined by Yang [J. Chem. Phys. 109, 10107 (1998)]. Specifically, we examine the error-function and Gaussian-attenuated error-function adiabatic connections. It is shown that while the error-function connection displays some promising features, making it amenable to the possible development of new exchange-correlation functionals by modeling the adiabatic connection integrand, the Gaussian-attenuated error-function connection is less promising. We explore the high-density and strong static correlation regimes for two-electron systems. Implications of this work for the utility of range-separated schemes are discussed.

8.
J Chem Phys ; 132(16): 164115, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20441266

RESUMEN

Using a recently implemented technique for the calculation of the adiabatic connection (AC) of density functional theory (DFT) based on Lieb maximization with respect to the external potential, the AC is studied for atoms and molecules containing up to ten electrons: the helium isoelectronic series, the hydrogen molecule, the beryllium isoelectronic series, the neon atom, and the water molecule. The calculation of AC curves by Lieb maximization at various levels of electronic-structure theory is discussed. For each system, the AC curve is calculated using Hartree-Fock (HF) theory, second-order Moller-Plesset (MP2) theory, coupled-cluster singles-and-doubles (CCSD) theory, and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, expanding the molecular orbitals and the effective external potential in large Gaussian basis sets. The HF AC curve includes a small correlation-energy contribution in the context of DFT, arising from orbital relaxation as the electron-electron interaction is switched on under the constraint that the wave function is always a single determinant. The MP2 and CCSD AC curves recover the bulk of the dynamical correlation energy and their shapes can be understood in terms of a simple energy model constructed from a consideration of the doubles-energy expression at different interaction strengths. Differentiation of this energy expression with respect to the interaction strength leads to a simple two-parameter doubles model (AC-D) for the AC integrand (and hence the correlation energy of DFT) as a function of the interaction strength. The structure of the triples-energy contribution is considered in a similar fashion, leading to a quadratic model for the triples correction to the AC curve (AC-T). From a consideration of the structure of a two-level configuration-interaction (CI) energy expression of the hydrogen molecule, a simple two-parameter CI model (AC-CI) is proposed to account for the effects of static correlation on the AC. When parametrized in terms of the same input data, the AC-CI model offers improved performance over the corresponding AC-D model, which is shown to be the lowest-order contribution to the AC-CI model. The utility of the accurately calculated AC curves for the analysis of standard density functionals is demonstrated for the BLYP exchange-correlation functional and the interaction-strength-interpolation (ISI) model AC integrand. From the results of this analysis, we investigate the performance of our proposed two-parameter AC-D and AC-CI models when a simple density functional for the AC at infinite interaction strength is employed in place of information at the fully interacting point. The resulting two-parameter correlation functionals offer a qualitatively correct behavior of the AC integrand with much improved accuracy over previous attempts. The AC integrands in the present work are recommended as a basis for further work, generating functionals that avoid spurious error cancellations between exchange and correlation energies and give good accuracy for the range of densities and types of correlation contained in the systems studied here.

9.
J Chem Phys ; 130(10): 104111, 2009 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-19292527

RESUMEN

The Lieb formulation of density-functional theory is briefly reviewed and its straightforward generalization to arbitrary electron-electron interaction strengths discussed, leading to the introduction of density-fixed and potential-fixed adiabatic connections. An iterative scheme for the calculation of the Lieb functionals under the appropriate constraints is outlined following the direct optimization approach of Wu and Yang [J. Chem. Phys. 118, 2498 (2003)]. First- and second-order optimization schemes for the calculation of accurate adiabatic-connection integrands are investigated and compared; the latter is preferred both in terms of computational efficiency and accuracy. The scheme is applicable to systems of any number of electrons. However, to determine the accuracy that may be achieved, the present work focuses on two-electron systems for which a number of simplifications may be exploited. The procedure is applied to the helium isoelectronic series and the H(2) molecule. The resulting adiabatic-connection curves yield the full configuration-interaction exchange-correlation energies extrapolated to the basis-set limit. The relationship between the Kohn-Sham and natural orbitals as functions of the electron-electron interaction strength is explored in detail for H(2). The accuracy with which the exchange-correlation contributions to the modified local potential can be determined is discussed. The new accurate adiabatic-connection curves are then compared with some recently investigated approximate forms calculated using accurate full configuration-interaction input data. This study demonstrates that the adiabatic-connection integrand may be determined accurately and efficiently, providing important insights into the link between the Kohn-Sham and traditional quantum-chemical treatments of the exchange-correlation problem in electronic-structure theory.

10.
Chirality ; 18(5): 357-69, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16557525

RESUMEN

A computational investigation of the optical rotatory power of cis and trans 2-methyl-5-oxo-tetrahydro-3-furancarboxylic acids and the corresponding methyl and ethyl esters is presented. Solvent effects on both the conformational space and the rotatory power are analyzed by comparing results obtained in vacuo with those computed--using the Polarizable Continuum Model--in methanol. A comparison with experimental observations for the optical rotatory power of the title compounds in methanol is also carried out, in a few cases also for several wavelengths. Agreement between theory and experiment is in all cases excellent, in particular when solvent effects are included both in the geometry optimization and in the calculation of the OR, thus confirming the validity of the computational procedure adopted, even for this challenging family of floppy molecules.

11.
J Phys Chem A ; 109(7): 1449-53, 2005 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-16833463

RESUMEN

The absolute configuration of (S)-(-)-paraconic acid is correctly assigned on the basis of ab initio calculations of the specific optical rotation (OR) at the sodium D line, carried out both in vacuum and in methanol. Density functional theory (DFT) and Møller-Plesset second-order perturbation theory (MP2) are used to determine the most stable conformational structures, whose OR values are then calculated using DFT linear response theory and London atomic orbitals. The total OR is obtained by averaging these values using the population fractions determined from Boltzmann's statistics. The total OR of the MP2 structures has the correct sign both in vacuum and in solution, whereas only the solvent-relaxed DFT structures correctly reproduce the experimental sign. The strong solvent effect on the total OR is shown to arise primarily due to the variations in the relative energies of the various conformations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...