Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770195

RESUMEN

The increase in concrete structures' durability is a milestone to improve the sustainability of buildings and infrastructures. In order to ensure a prolonged service life, it is necessary to detect the deterioration of materials by means of monitoring systems aimed at evaluating not only the penetration of aggressive substances into concrete but also the corrosion of carbon-steel reinforcement. Therefore, proper data collection makes it possible to plan suitable restoration works which can be carried out with traditional or innovative techniques and materials. This work focuses on building heritage and it highlights the most recent findings for the conservation and restoration of reinforced concrete structures and masonry buildings.

2.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36559977

RESUMEN

Scanning microwave microscopy (SMM) is a novel metrological tool that advances the quantitative, nanometric, high-frequency, electrical characterization of a broad range of materials of technological importance. In this work, we report an inverted near-field scanning microwave microscopy (iSMM) investigation of a graphene oxide-based epoxy nanocomposite material at a nanoscopic level. The high-resolution spatial mapping of local conductance provides a quantitative analysis of the sample's electrical properties. In particular, the electrical conductivity in the order of ∼10-1 S/m as well as the mapping of the dielectric constant with a value of ∼4.7 ± 0.2 are reported and validated by the full-wave electromagnetic modeling of the tip-sample interaction.

3.
J Appl Biomater Funct Mater ; 16(3): 186-202, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29996741

RESUMEN

This review presents "a state of the art" report on sustainability in construction materials. The authors propose different solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions and consumption of non-renewable resources. Part 1-the present paper-focuses on the use of binders alternative to Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers. Part 2 will be dedicated to traditional Portland-free binders and waste management and recycling in mortar and concrete production.


Asunto(s)
Materiales de Construcción , Tecnología Química Verde , Administración de Residuos/métodos , Álcalis/química , Compuestos de Aluminio/química , Silicatos de Aluminio/química , Compuestos de Calcio/química , Arcilla , Corrosión , Compuestos de Azufre/química
4.
J Appl Biomater Funct Mater ; 16(4): 207-221, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29991308

RESUMEN

The paper represents the "state of the art" on sustainability in construction materials. In Part 1 of the paper, issues related to production, microstructures, chemical nature, engineering properties, and durability of mixtures based on binders alternative to Portland cement were presented. This second part of the paper concerns the use of traditional and innovative Portland-free lime-based mortars in the conservation of cultural heritage, and the recycling and management of wastes to reduce consumption of natural resources in the production of construction materials. The latter is one of the main concerns in terms of sustainability since nowadays more than 75% of wastes are disposed of in landfills.


Asunto(s)
Materiales de Construcción , Administración de Residuos/métodos , Compuestos de Calcio/química , Arcilla/química , Tecnología Química Verde/métodos , Óxidos/química , Reciclaje , Goma/química , Dióxido de Silicio/química
5.
Waste Manag ; 30(4): 655-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20022737

RESUMEN

In this project concrete mixtures were prepared that were characterized by low ductility due to desiccation by using debris from building demolition, which after a suitable treatment was used as aggregate for partial replacement of natural aggregates. The recycled aggregate used came from a recycling plant, in which rubble from building demolition was selected, crushed, cleaned, sieved, and graded. Such aggregates are known to be more porous as indicated by the Saturated Surface Dry (SSD) moisture content. The recycled concrete used as aggregates were added to the concrete mixture in order to study their influence on the fresh and hardened concrete properties. They were added either after water pre-soaking or in dry condition, in order to evaluate the influence of moisture in aggregates on the performance of concrete containing recycled aggregate. In particular, the effect of internal curing, due to the use of such aggregates, was studied. Concrete behavior due to desiccation under dehydration was studied by means of both drying shrinkage test and German angle test, through which shrinkage under the restrained condition of early age concrete can be evaluated.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Materiales de Construcción/análisis , Residuos Industriales , Fuerza Compresiva , Desecación , Pruebas de Dureza , Tamaño de la Partícula , Estrés Mecánico , Factores de Tiempo , Agua/análisis , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...