Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Commun ; : 100942, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38720463

RESUMEN

Feralization is an important evolutionary process, but the mechanisms behind it remain poorly understood. Here, we use the ancient fiber crop, ramie (Boehmeria nivea (L.) Gaudich.) as a model to investigate genomic changes associated with both domestication and fertilization. We first produced a chromosome-scale de novo genome assembly of feral ramie and investigated structural variations between feral and domesticated ramie genomes. Next, 915 accessions from 20 countries were gathered, comprising cultivars, major landraces, feral populations and wild progenitor. Based on whole genome resequencing of these accessions, the most comprehensive ramie genomic variation map to date was constructed. Phylogenetic, demographic, and admixture signal detection analyses indicate that feral ramie is of exoferal or exo-endo origin, i.e., descended from hybridization between domesticated ramie and wild progenitor or ancient landraces. Feral ramie has greater genetic diversity than wild or domesticated ramie, and genomic regions affected by natural selection during feralization are different from those under selection during domestication. Ecological analyses showed that feral and domesticated ramie have similar ecological niches which are substantially different from the niche of the wild progenitor, and three environmental variables were associated with habitat-specific adaptation in feral ramie. Our findings advance our understanding of feralization, providing a scientific basis for the excavation of new crop germplasm resources and offering novel insights into the evolution of feralization in nature.

3.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605677

RESUMEN

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Asunto(s)
Ecosistema , Clima Tropical , Bosques , Árboles , Carbono
4.
Zool Res ; 45(1): 160-175, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199971

RESUMEN

The insect mitogenome is typically a compact circular molecule with highly conserved gene contents. Nonetheless, mitogenome structural variations have been reported in specific taxa, and gene rearrangements, usually the tRNAs, occur in different lineages. Because synapomorphies of mitogenome organizations can provide information for phylogenetic inferences, comparative analyses of mitogenomes have been given increasing attention. However, most studies use a very few species to represent the whole genus, tribe, family, or even order, overlooking potential variations at lower taxonomic levels, which might lead to some incorrect inferences. To provide new insights into mitogenome organizations and their implications for phylogenetic inference, this study conducted comparative analyses for mitogenomes of three social bee tribes (Meliponini, Bombini, and Apini) based on the phylogenetic framework with denser taxonomic sampling at the species and population levels. Comparative analyses revealed that mitogenomes of Apini and Bombini are the typical type, while those of Meliponini show diverse variations in mitogenome sizes and organizations. Large inverted repeats (IRs) cause significant gene rearrangements of protein coding genes (PCGs) and rRNAs in Indo-Malay/Australian stingless bee species. Molecular evolution analyses showed that the lineage with IRs have lower d N/ d S ratios for PCGs than lineages without IRs, indicating potential effects of IRs on the evolution of mitochondrial genes. The finding of IRs and different patterns of gene rearrangements suggested that Meliponini is a hotspot in mitogenome evolution. Unlike conserved PCGs and rRNAs whose rearrangements were found only in the mentioned lineages within Meliponini, tRNA rearrangements are common across all three tribes of social bees, and are significant even at the species level, indicating that comprehensive sampling is needed to fully understand the patterns of tRNA rearrangements, and their implications for phylogenetic inference.


Asunto(s)
Genoma Mitocondrial , Abejas/genética , Animales , Australia , Filogenia , Evolución Molecular , ARN Ribosómico/genética , ARN de Transferencia
5.
Insects ; 14(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37999086

RESUMEN

Bumblebees have been considered one of the most important pollinators on the planet. However, recent reports of bumblebee decline have raised concern about a significant threat to ecosystem stability. Infectious diseases caused by multiple pathogen infections have been increasingly recognized as an important mechanism behind this decline worldwide. Understanding the determining factors that influence the assembly and composition of pathogen communities among bumblebees can provide important implications for predicting infectious disease dynamics and making effective conservation policies. Here, we study the relative importance of biotic interactions versus interspecific host resistance in shaping the pathogen community composition of bumblebees in China. We first conducted a comprehensive survey of 13 pathogens from 22 bumblebee species across China. We then applied joint species distribution modeling to assess the determinants of pathogen community composition and examine the presence and strength of pathogen-pathogen associations. We found that host species explained most of the variations in pathogen occurrences and composition, suggesting that host specificity was the most important variable in predicting pathogen occurrences and community composition in bumblebees. Moreover, we detected both positive and negative associations among pathogens, indicating the role of competition and facilitation among pathogens in determining pathogen community assembly. Our research demonstrates the power of a pluralistic framework integrating field survey of bumblebee pathogens with community ecology frameworks to understand the underlying mechanisms of pathogen community assembly.

7.
Trends Plant Sci ; 28(8): 913-923, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37142532

RESUMEN

Despite the importance of plants for humans and the threats to their future, plant conservation receives far less support compared with vertebrate conservation. Plants are much cheaper and easier to conserve than are animals, but, although there are no technical reasons why any plant species should become extinct, inadequate funding and the shortage of skilled people has created barriers to their conservation. These barriers include the incomplete inventory, the low proportion of species with conservation status assessments, partial online data accessibility, varied data quality, and insufficient investment in both in and ex situ conservation. Machine learning, citizen science (CS), and new technologies could mitigate these problems, but we need to set national and global targets of zero plant extinction to attract greater support.


Asunto(s)
Biodiversidad , Embryophyta , Animales , Humanos , Conservación de los Recursos Naturales , Plantas
8.
Glob Chang Biol ; 29(14): 3851-3853, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073823

Asunto(s)
Biodiversidad , Incendios
9.
Trends Ecol Evol ; 38(3): 289-300, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36456382

RESUMEN

Long-distance dispersal (LDD) beyond the range of a species is an important driver of ecological and evolutionary patterns, but insufficient attention has been given to postdispersal establishment. In this review, we summarize current knowledge of the post-LDD establishment phase in plant colonization, identify six key determinants of establishment success, develop a general quantitative framework for post-LDD establishment, and address the major challenges and opportunities in future research. These include improving detection and understanding of LDD using novel approaches, investigating mechanisms determining post-LDD establishment success using mechanistic modeling and inference, and comparison of establishment between past and present. By addressing current knowledge gaps, we aim to further our understanding of how LDD affects plant distributions, and the long-term consequences of LDD events.


Asunto(s)
Modelos Biológicos , Dispersión de las Plantas , Plantas , Evolución Biológica
10.
Curr Biol ; 32(15): 3429-3435.e5, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35777364

RESUMEN

Rates of seed dispersal have rarely been considered important. Here, we demonstrate through field observations and experiments that rapid dispersal is essential for the unusually short-lived seeds of Aquilaria sinensis (agarwood; Thymelaeaceae), which desiccate and die within hours of exposure by fruit dehiscence in the hot, dry forest canopy in tropical southwest China. We show that three species of Vespa hornets remove most seeds within minutes of exposure. The hornets consume only the fleshy elaiosomes and deposit most seeds in damp shade, where they can germinate, a mean of 166 m from the parent tree. Electrophysiological assays and field experiments demonstrate that the hornets are attracted by highly volatile short-carbon-chain (C5-C9) compounds, including aldehydes, ketones, alcohols, and acids, emitted from the dehiscent fruit capsule. These attractive fruit volatiles share 14 of 17 major electrophysiologically active compounds with those emitted from herbivore-damaged leaves, which attract predators, including hornets. Rapid seed dispersal thus appears to have been achieved in this species by the re-purposing of a rapid indirect defense mechanism. We predict that rapid seed dispersal by various mechanisms will be more widespread than currently documented and suggest that volatile attractants are more effective in facilitating this than visual signals, which are blocked by vegetation.


Asunto(s)
Dispersión de Semillas , Avispas , Animales , Frutas , Plantas , Dispersión de Semillas/fisiología , Semillas/fisiología , Avispas/fisiología
11.
New Phytol ; 236(2): 714-728, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35811425

RESUMEN

Hemiepiphytic figs killing their host trees is an ecological process unique to the tropics. Yet the benefits and adaptive strategies of their special life history remain poorly understood. We compared leaf phosphorus (P) content data of figs and palms worldwide, and functional traits and substrate P content of hemiepiphytic figs (Ficus tinctoria), their host palm and nonhemiepiphytic conspecifics at different growth stages in a common garden. We found that leaf P content of hemiepiphytic figs and their host palms significantly decreased when they were competing for soil resources, but that of hemiepiphytic figs recovered after host death. P availability in the canopy humus and soil decreased significantly with the growth of hemiepiphytic figs. Functional trait trade-offs of hemiepiphytic figs enabled them to adapt to the P shortage while competing with their hosts. From the common garden to a global scale, the P competition caused by high P demand of figs may be a general phenomenon. Our results suggest that P competition is an important factor causing host death, except for mechanically damaging and shading hosts. Killing hosts benefits hemiepiphytic figs by reducing interspecific P competition and better acquiring P resources in the P-deficient tropics, thereby linking the life history strategy of hemiepiphytic figs to the widespread P shortage in tropical soils.


Asunto(s)
Ficus , Avispas , Animales , Fósforo , Hojas de la Planta , Suelo , Árboles
12.
Sci Rep ; 12(1): 5705, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383264

RESUMEN

Although 23% of Thailand's land is in protected areas, these are vulnerable to climate change. We used spatial distribution modelling for 866 vertebrate and 591 plant species to understand potential climate change impacts on species in protected areas. Most mammals, birds, and plants were projected to decline by 2070, but most amphibians and reptiles were projected to increase. By 2070 under RCP8.5, 54% of modeled species will be threatened and 11 nationally extinct. However, SDMs are sensitive to truncation of the climate space currently occupied by habitat loss and hunting, and apparent truncation by data limitations. In Thailand, lowland forest clearance has biased records for forest-dependent species to cooler uplands (> 250 m a.s.l.) and hunting has confined larger vertebrates to well-protected areas. In contrast, available data is biased towards lowland non-forest taxa for amphibians and reptiles. Niche truncation may therefore have resulted in overestimation of vulnerability for some mammal and plant species, while data limitations have likely led to underestimation of the threat to forest-dependent amphibians and reptiles. In view of the certainty of climate change but the many uncertainties regarding biological responses, we recommend regular, long-term monitoring of species and communities to detect early signals of climate change impacts.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Anfibios/fisiología , Animales , Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Mamíferos , Tailandia
13.
Front Plant Sci ; 13: 811206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401620

RESUMEN

Morphological approaches often fail to delimit species in recently derived species complexes. This can be exacerbated in historical collections which may have lost key features in specimen preparation and preservation. Here, we examine the Pedicularis siphonantha complex, endemic to the Mountains of Southwest China. This complex is characterized by its red/purple/pink and long-tubular corolla, and twisted, beaked galea. However, herbarium specimens are often difficult to identify to species. Molecular approaches using nrITS or nuclear ribosomal internal transcribed spacer (nrITS) + plastid DNA (ptDNA) have been successfully used for species identification in Pedicularis. To resolve taxonomic confusion in the Pedicularis siphonantha complex, we reconstructed phylogenies of the complex using nrITS and four plastid DNA loci (matK, rbcL, trnH-psbA, and trnL-F). To recover as much of the phylogenetic history as possible, we sampled individuals at the population level. Topological incongruence between the nrITS and ptDNA datasets was recovered in clades including two widely distributed species, Pedicularis milliana and Pedicularis tenuituba. Based on morphological, geographical, and genetic evidence, we suggest that hybridization/introgression has occurred between P. milliana and Pedicularis sigmoidea/Pedicularis sp. 1 in the Yulong Snow Mountain of Lijiang, northwest Yunnan, and between P. tenuituba and Pedicularis leptosiphon in Ninglang, northwest Yunnan. After removing conflicting DNA regions in Pedicularis dolichosiphon (nrITS) and P. milliana (ptDNA), the concatenated nrITS and ptDNA phylogenies distinguish 11 species in the P. siphonantha complex, including two undescribed species, from the Jiaozi and Yulong Snow Mountains, respectively. Phylogeographical analyses indicate that the P. siponantha complex originated from south of the Hengduan Mountains, expanding north to the Himalayas and the Yunnan-Guizhou Plateau. Moreover, the uplift of the Qinghai-Tibet Plateau and climate oscillations may have driven further diversification in the complex.

14.
Hortic Res ; 92022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35031793

RESUMEN

Southwest China is a plant diversity hotspot. The near-cosmopolitan genus Ilex (c. 664 spp., Aquifoliaceae) reaches its maximum diversity in this region, with many narrow-range and a few widespread species. Divergent selection on widespread species leads to local adaptation, with consequences for both conservation and utilization, but is counteracted by geneflow. Many Ilex species are utilized as teas, medicines, ornamentals, honey plants, and timber, but variation below the species level is largely uninvestigated. We therefore studied the widespread Ilex polyneura, which occupies most of the elevational range available and is cultivated for its decorative leafless branches with persistent red fruits. We assembled a chromosome-scale genome using approximately 100x whole genome long-read and short-read sequencing combined with Hi-C sequencing. The genome is approximately 727.1 Mb, with a contig N50 size of 5 124 369 bp and a scaffold N50 size of 36 593 620 bp, for which the BUSCO score was 97.6%, and 98.9% of the assembly was anchored to 20 pseudochromosomes. Out of 32 838 genes predicted, 96.9% were assigned functions. Two whole genome duplication events were identified. Using this genome as a reference, we conducted a population genomics study of 112 individuals from 21 populations across the elevation range using restriction site-associated DNA sequencing (RADseq). Most populations clustered into four clades separated by distance and elevation. Selective sweep analyses identified 34 candidate genes potentially under selection at different elevations, with functions related to responses to abiotic and biotic stresses. This first high-quality genome in the Aquifoliales will facilitate the further domestication of the genus.

15.
Mitochondrial DNA B Resour ; 6(11): 3134-3136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660891

RESUMEN

We report complete chloroplast genome (plastome) sequences of Stylidium debile (150,105 bp) and Stylidium petiolare (150,998 bp). Both plastomes had the typical quadripartite structure, with large single-copy (LSC) and small single-copy (SSC) regions separated by two inverted repeat (IR) regions. Both plastomes have lost the rps19 and ycf15 CDS genes, and had infA-like, rps22-like, and rps7-like pseudogenes. Moreover, IR regions were expanded by having trnH GUG tRNA and the rps22-like pseudogene. Plastome phylogenomic analyses showed that the two Stylidium species formed a monophyletic clade (BS = 100), sister to the Argophyllaceae (BS = 86/83). Sequence differences between the two Stylidium plastomes were 5011 sites, including 2166 variable sites and 2845 indels, with the petA-psbJ spacer the most variable region, followed by the trnK UUU-matK intron and trnG UUG-rps16 spacer.

16.
Natl Sci Rev ; 8(7): nwab032, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34694304

RESUMEN

Biodiversity science in China has seen rapid growth over recent decades, ranging from baseline biodiversity studies to understanding the processes behind evolution across dynamic regions such as the Qinghai-Tibetan Plateau. We review research, including species catalogues; biodiversity monitoring; the origins, distributions, maintenance and threats to biodiversity; biodiversity-related ecosystem function and services; and species and ecosystems' responses to global change. Next, we identify priority topics and offer suggestions and priorities for future biodiversity research in China. These priorities include (i) the ecology and biogeography of the Qinghai-Tibetan Plateau and surrounding mountains, and that of subtropical and tropical forests across China; (ii) marine and inland aquatic biodiversity; and (iii) effective conservation and management to identify and maintain synergies between biodiversity and socio-economic development to fulfil China's vision for becoming an ecological civilization. In addition, we propose three future strategies: (i) translate advanced biodiversity science into practice for biodiversity conservation; (ii) strengthen capacity building and application of advanced technologies, including high-throughput sequencing, genomics and remote sensing; and (iii) strengthen and expand international collaborations. Based on the recent rapid progress of biodiversity research, China is well positioned to become a global leader in biodiversity research in the near future.

17.
Plant Cell Physiol ; 62(6): 971-984, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34046678

RESUMEN

The plastid genome (plastome) is highly conserved in both gene order and content and has a lower mutation rate than the nuclear genome. However, the plastome is more variable in heterotrophic plants. To date, most such studies have investigated just a few species or only holoheterotrophic groups, and few have examined plastome evolution in recently derived lineages at an early stage of transition from autotrophy to heterotrophy. In this study, we investigated the evolutionary dynamics of plastomes in the monophyletic and recently derived Pedicularis sect. Cyathophora (Orobanchaceae). We obtained 22 new plastomes, 13 from the six recognized species of section Cyathophora, six from hemiparasitic relatives and three from autotrophic relatives. Comparative analyses of gene content, plastome structure and selection pressure showed dramatic differences among species in section Cyathophora and in Pedicularis as a whole. In comparison with autotrophic relatives and other Pedicularis spp., we found that the inverted repeat (IR) region in section Cyathophora had expansions to the small single-copy region, with a large expansion event and two independent contraction events. Moreover, NA(D)H dehydrogenase, accD and ccsA have lost function multiple times, with the function of accD being replaced by nuclear copies of an accD-like gene in Pedicularis spp. The ccsA and ndhG genes may have evolved under selection in association with IR expansion/contraction events. This study is the first to report high plastome variation in a recently derived lineage of hemiparasitic plants and therefore provides evidence for plastome evolution in the transition from autotrophy to heterotrophy.


Asunto(s)
Genoma de Plastidios , Pedicularis/genética , Filogenia , Plastidios/genética , Evolución Molecular , Genes de Plantas , NADH Deshidrogenasa/genética , Seudogenes
18.
Conserv Biol ; 35(6): 1797-1808, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33749881

RESUMEN

Transboundary conservation is playing an increasingly important role in maintaining ecosystem integrity and halting biodiversity loss caused by anthropogenic activities. However, lack of information on species distributions in transboundary regions and understanding of the threats in these areas impairs conservation. We developed a spatial conservation plan for the transboundary areas between Yunnan province, southwestern China, and neighboring Myanmar, Laos, and Vietnam in the Indo-Burma biodiversity hotspot. To identify priority areas for conservation and restoration, we determined species distribution patterns and recent land-use changes and examined the spatiotemporal dynamics of the connected natural forest, which supports most species. We assessed connectivity with equivalent connected area (ECA), which is the amount of reachable habitat for a species. An ECA incorporates the presence of habitat in a patch and the amount of habitat in other patches within dispersal distance. We analyzed 197,845 locality records from specimen collections and monographs for 21,004 plant and vertebrate species. The region of Yunnan immediately adjacent to the international borders had the highest species richness, with 61% of recorded species and 56% of threatened vertebrates, which suggests high conservation value. Satellite imagery showed the area of natural forest in the border zone declined by 5.2% (13,255 km2 ) from 1995 to 2018 and monoculture plantations increased 92.4%, shrubland 10.1%, and other cropland 6.2%. The resulting decline in connected natural forest reduced the amount of habitat, especially for forest specialists with limited dispersal abilities. The most severe decline in connectivity was along the Sino-Vietnamese border. Many priority areas straddle international boundaries, indicating demand and potential for establishing transboundary protected areas. Our results illustrate the importance of bi- and multilateral cooperation to protect biodiversity in this region and provide guidance for future conservation planning and practice.


Planeación de la Conservación en las Fronteras de China con Myanmar, Laos y Vietnam Resumen La conservación transfronteriza cada vez juega un papel más importante en la preservación de la integridad del ecosistema y en el freno a la pérdida local de la biodiversidad causada por las actividades antropogénicas. Sin embargo, la falta de información sobre la distribución de las especies en las regiones transfronterizas y de la comprensión de las amenazas en estas áreas obstaculiza la conservación. Desarrollamos un plan de conservación espacial para las áreas transfronterizas entre la provincia de Yunnan, al suroeste de China, y los países vecinos Myanmar, Laos y Vietnam localizadas en el punto caliente de biodiversidad Indo-Burma. Para identificar las áreas prioritarias para la conservación y la restauración, determinamos los patrones de distribución de las especies y los recientes cambios en el uso de suelo y examinamos las dinámicas espaciotemporales del bosque natural conectado, el cual mantiene a la mayoría de las especies. Evaluamos la conectividad con el área equivalente conectada (AEC), que es la cantidad de hábitat accesible para una especie. Un AEC incorpora la presencia del hábitat en un fragmento y la cantidad de hábitat en otros fragmentos dentro de la distancia de dispersión. Analizamos 197,845 registros de localidades desde colecciones de especímenes y monografías para 21,004 especies de plantas y de vertebrados. La región de Yunnan inmediatamente adyacente a las fronteras internacionales tuvo la riqueza de especies más alta con el 61% de las especies registradas y el 56% de los vertebrados amenazados, lo que sugiere un elevado valor de conservación. Las imágenes satelitales mostraron que el área del bosque natural en la zona fronteriza declinó en un 5.2% (13,255 km2 ) entre 1995 y 2018 y que los sembradíos de monocultivos incrementaron en un 92.4%, los matorrales en un 10.1% y otras tierras de cultivo en un 6.2%. La declinación resultante en el bosque natural conectado redujo la cantidad del hábitat, especialmente para los especialistas del bosque con habilidades limitadas de dispersión. La declinación más grave en la conectividad ocurrió a lo largo de la frontera entre China y Vietnam. Muchas áreas prioritarias atraviesan las fronteras internacionales, lo que indica una demanda y un potencial para el establecimiento de áreas protegidas transfronterizas. Nuestros resultados ejemplifican la importancia de la cooperación bi- y multilateral para proteger la biodiversidad en esta región y proporciona información para la planeación y práctica de la conservación en el futuro.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Efectos Antropogénicos , Biodiversidad , China , Laos , Mianmar , Vietnam
20.
Proc Biol Sci ; 288(1943): 20202352, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33468003

RESUMEN

Conspecific negative distance- and density-dependence is often assumed to be one of the most important mechanisms controlling forest community assembly and species diversity globally. Plant pathogens, and insect and mammalian herbivores, are the most common natural enemy types that have been implicated in this phenomenon, but their general effects at different plant life stages are still unclear. Here, we conduct a meta-analysis of studies that involved robust manipulative experiments, using fungicides, insecticides and exclosures, to assess the contributions of different natural enemy types to distance- and density-dependent effects at seed and seedling stages. We found that distance- and density-dependent mortality caused by natural enemies was most likely at the seedling stage and was greater at higher mean annual temperatures. Conspecific negative distance- and density-dependence at the seedling stage is significantly weakened when fungicides were applied. By contrast, negative conspecific distance- and density-dependence is not a general pattern at the seed stage. High seed mass reduced distance- and density-dependent mortality at the seed stage. Seed studies excluding only large mammals found significant negative conspecific distance-dependent mortality, but exclusion of all mammals resulted in a non-significant effect of conspecifics. Our study suggests that plant pathogens are a major cause of distance- and density-dependent mortality at the seedling stage, while the impacts of herbivores on seedlings have been understudied. At the seed stage, large and small mammals, respectively, weaken and enhance negative conspecific distance-dependent mortality. Future research should identify specific agents of mortality, investigate the interactions among different enemy types and assess how global change may affect natural enemies and thus influence the strength of conspecific distance- and density-dependence.


Asunto(s)
Fungicidas Industriales , Insecticidas , Animales , Fungicidas Industriales/toxicidad , Insecticidas/toxicidad , Plantones , Semillas , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...