Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080147

RESUMEN

The adsorption properties of microporous spherical carbon materials obtained from the resorcinol-formaldehyde resin, treated in a solvothermal reactor heated with microwaves and then subjected to carbonization, are presented. The potassium-based activation of carbon spheres was carried out in two ways: solution-based and solid-based methods. The effect of various factors, such as chemical agent selection, chemical activating agent content, and the temperature or time of activation, was investigated. The influence of microwave treatment on the adsorption properties was also investigated and described. The adsorption performance of carbon spheres was evaluated in detail by examining CO2 adsorption from the gas phase.

2.
Molecules ; 25(22)2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203114

RESUMEN

In this work, low-pressure synthesis of carbon spheres from resorcinol and formaldehyde using an autoclave is presented. The influence of reaction time and process temperature as well as the effect of potassium oxalate, an activator, on the morphology and CO2 adsorption properties was studied. The properties of materials produced at pressureless (atmospheric) conditions were compared with those synthesized under higher pressures. The results of this work show that enhanced pressure treatment is not necessary to produce high-quality carbon spheres, and the morphology and porosity of the spheres produced without an activation step at pressureless conditions are not significantly different from those obtained at higher pressures. In addition, CO2 uptake was not affected by elevated pressure synthesis. It was also demonstrated that addition of the activator (potassium oxalate) had much more effect on key properties than the applied pressure treatment. The use of potassium oxalate as an activator caused non-uniform size distribution of spherical particles. Simultaneously higher values of surface area and total pore volumes were reached. A pressure treatment of the carbon materials in the autoclave significantly enhanced the CO2 uptake at 25 °C, but had no effect on it at 0 °C.


Asunto(s)
Dióxido de Carbono/química , Carbono/química , Presión , Adsorción , Nitrógeno/química , Ácido Oxálico/química , Porosidad , Termogravimetría , Difracción de Rayos X
3.
Mater Sci Eng C Mater Biol Appl ; 104: 109915, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31500060

RESUMEN

An ultra-low percolation threshold electrically conductive polymer nanocomposite incorporating graphene into a polyhedral oligomeric silsesquioxane polycaprolactone (POSS-PCL/graphene) is described in this paper. Multilayer graphene flakes were homogeneously dispersed into POSS-PCL at 0.08, 0.4, 0.8, 1.6, and 4.0 wt% concentrations. The impedance spectroscopy of 0.08 wt% and higher concentration of graphene in POSS-PCL represented major improvement in conductivity over pristine POSS-PCL. The percolation threshold occurred at 0.08 wt% graphene concentration, and at 4.0 wt% the electrical conductivity exceeded 10-4 Scm-1. Furthermore, the chemical, morphological, and mechanical of the POSS-PCL/graphene with various graphene concentrations were investigated. Finally, neural cells cultured on all POSS-PCL/graphene constructs indicated higher metabolic activity and cell proliferation in comparison with pristine POSS-PCL. Herein, we demonstrate a method of developing a neural-compatible and electrically conductive polymer nanocomposite that could potentially function as a neural tissue engineered platform technology for neurological and neurosurgical applications.


Asunto(s)
Conductividad Eléctrica , Grafito/química , Nanocompuestos/química , Tejido Nervioso/fisiología , Neurocirugia , Poliésteres/química , Ingeniería de Tejidos/métodos , Animales , Proliferación Celular , Supervivencia Celular , ADN/metabolismo , Compuestos de Organosilicio/química , Espectroscopía de Fotoelectrones , Ratas Wistar , Células de Schwann/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Propiedades de Superficie , Resistencia a la Tracción
4.
ACS Appl Mater Interfaces ; 8(34): 22337-44, 2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27505052

RESUMEN

The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact and nondestructive measurement, such as RE, to extract key material parameters is beneficial for conveniently understanding the oxidation process that would ultimately enable copper oxide-based devices at manufacturing scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...