Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Osteoarthritis Cartilage ; 31(4): 507-518, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36370958

RESUMEN

OBJECTIVES: ANP32A is a key protector of cartilage health, via preventing oxidative stress and Wnt hyper-activation. We aimed to unravel how ANP32A is regulated in cartilage. METHODS: A bioinformatics pipeline was applied to identify regulators of ANP32A. Pathways of interest were targeted to study their impact on ANP32A in in vitro cultures of the human chondrocyte C28/I2 cell-line and primary human articular chondrocytes (hACs) from up to five different donors, using Wnt-activator CHIR99021, hypoxia-mimetic IOX2 and a hypoxia chamber. ANP32A was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. In vivo, the effect of hypoxia was examined by immunohistochemistry in mice injected intra-articularly with IOX2 after destabilization of the medial meniscus. Effects of Wnt hyper-activation were investigated using Frzb-knockout mice and wild-type mice treated intra-articularly with CHIR99021. Wnt inhibition effects were assessed upon intra-articular injection of XAV939. RESULTS: The hypoxia and Wnt signaling pathways were identified as networks controlling ANP32A expression. In vitro and in vivo experiments demonstrated increases in ANP32A upon hypoxic conditions (1.3-fold in hypoxia in C28/I2 cells with 95% confidence interval (CI) [1.11-1.54] and 1.90-fold in hACs [95% CI: 1.56-2] and 1.67-fold in ANP32A protein levels after DMM surgery with IOX2 injections [95% CI: 1.33-2.08]). Wnt hyper-activation decreased ANP32A in chondrocytes in vitro (1.23-fold decrease [95% CI: 1.02-1.49]) and in mice (1.45-fold decrease after CHIR99021 injection [95% CI: 1.22-1.72] and 1.41-fold decrease in Frzb-knockout mice [95% CI: 1.00-1.96]). Hypoxia and Wnt modulated ataxia-telangiectasia mutated serine/threonine kinase (ATM), an ANP32A target gene, in hACs (1.89-fold increase [95% CI: 1.38-2.60] and 1.41-fold decrease [95% CI: 1.02-1.96]). CONCLUSIONS: Maintaining hypoxia and limiting Wnt activation sustain ANP32A and protect against osteoarthritis.


Asunto(s)
Cartílago Articular , Ratones , Humanos , Animales , Cartílago Articular/metabolismo , Vía de Señalización Wnt/genética , Condrocitos/metabolismo , Ratones Noqueados , Hipoxia , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/farmacología
2.
Osteoarthritis Cartilage ; 30(5): 724-734, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35227892

RESUMEN

OBJECTIVES: To investigate how ANP32A, previously linked to the antioxidant response, regulates Wnt signaling as unraveled by transcriptome analysis of Anp32a-deficient mouse articular cartilage, and its implications for osteoarthritis (OA) and diseases beyond the joint. METHODS: Anp32a knockdown chondrogenic ATDC5 cells were cultured in micromasses. Wnt target genes, differentiation markers and matrix deposition were quantified. Wnt target genes were determined in articular cartilage from Anp32a-deficient mice and primary human articular chondrocytes upon ANP32A silencing, using qPCR, luciferase assays and immunohistochemistry. Co-immunoprecipitation, immunofluorescence and chromatin-immunoprecipitation quantitative PCR probed the molecular mechanism via which ANP32A regulates Wnt signaling. Anp32a-deficient mice were subjected to the destabilization of the medial meniscus (DMM) OA model and treated with a Wnt inhibitor and an antioxidant. Severity of OA was assessed by cartilage damage and osteophyte formation. Human Protein Atlas data analysis identified additional organs where ANP32A may regulate Wnt signaling. Wnt target genes were determined in heart and hippocampus from Anp32a-deficient mice, and cardiac hypertrophy and fibrosis quantified. RESULTS: Anp32a loss triggered Wnt signaling hyper-activation in articular cartilage. Mechanistically, ANP32A inhibited target gene expression via histone acetylation masking. Wnt antagonist treatment reduced OA severity in Anp32a-deficient mice by preventing osteophyte formation but not cartilage degradation, contrasting with antioxidant treatment. Dual therapy ameliorated more OA features than individual treatments. Anp32a-deficient mice also showed Wnt hyper-activation in the heart, potentially explaining the cardiac hypertrophy phenotype found. CONCLUSIONS: ANP32A is a novel translationally relevant repressor of Wnt signaling impacting osteoarthritis and cardiac disease.


Asunto(s)
Cartílago Articular , Cardiopatías , Osteoartritis , Osteofito , Animales , Antioxidantes/metabolismo , Cardiomegalia/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Cardiopatías/metabolismo , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Osteofito/metabolismo , Vía de Señalización Wnt/fisiología
3.
Osteoarthritis Cartilage ; 27(11): 1702-1710, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31330188

RESUMEN

OBJECTIVE: Exostosin-1 (Ext1) encodes a glycosyltransferase required for heparan sulfate (HS) chain elongation in HS-proteoglycan biosynthesis. HS chains serve as binding partners for signaling proteins, affecting their distribution and activity. The Wnt/ß-catenin pathway emerged as critical regulator of chondrogenesis. Yet, how EXT1 and HS affect Wnt/ß-catenin signaling during chondrogenesis remains unexplored. METHOD: Ext1 was stably knocked-down or overexpressed in ATDC5 chondrogenic cells cultured as micromasses. HS content was determined using ELISA. Chondrogenic markers Sox9, Col2a1, Aggrecan, and Wnt direct target gene Axin2 were measured by RT-qPCR. Proteoglycan content was evaluated by Alcian blue and DMMB assay, canonical Wnt signaling activation by ß-catenin Western blot and TOP/FOP assay. ATDC5 cells and human articular chondrocytes were treated with Wnt activators CHIR99021 and recombinant WNT3A. RESULTS: Ext1 knock-down reduced HS, and increased chondrogenic markers and proteoglycan accumulation. Ext1 knock-down reduced active Wnt/ß-catenin signaling. Conversely, Ext1 overexpressing cells, with higher HS content, showed decreased chondrogenic differentiation and enhanced Wnt/ß-catenin signaling. Wnt/ß-catenin signaling activation led to a down-regulation of Ext1 expression in ATDC5 cells and in human articular chondrocytes. CONCLUSIONS: EXT1 affects chondrogenic differentiation of precursor cells, in part via changes in the activity of Wnt/ß-catenin signaling. Wnt/ß-catenin signaling controls Ext1 expression, suggesting a regulatory loop between EXT1 and Wnt/ß-catenin signaling during chondrogenesis.


Asunto(s)
Condrocitos/metabolismo , Condrogénesis/genética , Regulación de la Expresión Génica , N-Acetilglucosaminiltransferasas/genética , ARN/genética , Vía de Señalización Wnt/genética , Western Blotting , Diferenciación Celular , Células Cultivadas , Condrocitos/patología , Ensayo de Inmunoadsorción Enzimática , Humanos , N-Acetilglucosaminiltransferasas/biosíntesis , Proteínas Wnt/biosíntesis , Proteínas Wnt/genética
4.
Osteoarthritis Cartilage ; 27(3): 513-525, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513362

RESUMEN

OBJECTIVE: We earlier identified that the histone methyltransferase Disruptor of telomeric silencing 1-like (DOT1L) is as a master protector of cartilage health via limiting excessive activation of the Wnt pathway. However, cartilage-specific homozygous Dot1l knockout mice exhibited a severe growth phenotype and perinatal death, which hampered their use in induced or ageing models of osteoarthritis (OA). The aim of this study was to generate and examine haploinsufficient and inducible conditional Dot1l-deficient mouse models to evaluate the importance of DOT1L during post-traumatic or ageing-associated OA onset and progression. METHOD: We used cartilage-specific heterozygous and postnatal tamoxifen-inducible Dot1l knockout mice and performed destabilization of the medial meniscus (DMM) and ageing as OA models. Mice were examined histologically using X-rays and micro-computed tomography (µCT), and cartilage damage and osteophyte formation were assessed based on OARSI guidelines. Immunohistochemistry of DOT1L, H3K79me2, TCF1 and COLX was performed. RESULTS: Both Dot1l-deficient strains exhibit a phenotype characterized by joint remodeling with extensive osteophyte formation and ectopic ossification upon ageing, indicating accelerated development of spontaneous osteoarthritis. In the DMM-induced OA mouse model, absence of Dot1l resulted in increased cartilage damage. Wnt signalling hyper-activation and ectopic chondrocyte hypertrophy were observed in the articular cartilage of both Dot1l-deficient mice. CONCLUSIONS: This study demonstrated the functional relevance of DOT1L in vivo during the development of OA using genetically modified mice. Thus, maintaining or enhancing DOT1L activity during ageing or after trauma might prevent OA onset and progression.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/deficiencia , Articulaciones/lesiones , Osteoartritis/etiología , Animales , Articulaciones/diagnóstico por imagen , Articulaciones/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoartritis/diagnóstico por imagen , Radiografía , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...