Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Materials (Basel) ; 16(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38005019

RESUMEN

An endotracheal tube (ETT) is a greatly appreciated medical device at the global level with widespread application in the treatment of respiratory diseases, such as bronchitis and asthma, and in general anesthesia, to provide narcotic gases. Since an important quantitative request for cuffed ETTs was recorded during the COVID-19 pandemic, concerns about infection have risen. The plasticized polyvinyl chloride (PVC) material used to manufacture ETTs favors the attachment of microorganisms from the human biological environment and the migration of plasticizer from the polymer that feeds the microorganisms and promotes the growth of biofilms. This leads to developing infections, which means additional suffering, discomfort for patients, and increased hospital costs. In this work, we propose to modify the surfaces of some samples taken from commercial ETTs in order to develop their hydrophobic character using surface fluorination by a plasma treatment in SF6 discharge and magnetron sputtering physical evaporation from the PTFE target. Samples with surfaces thus modified were subsequently tested using XPS, ATR-FTIR, CA, SEM + EDAX, profilometry, density, Shore A hardness, TGA-DSC, and biological antimicrobial and biocompatibility properties. The obtained results demonstrate a successful increase in the hydrophobic character of the plasticized PVC samples and biocompatibility properties.

2.
Materials (Basel) ; 16(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37512308

RESUMEN

Ventilator-associated pneumonia is one of the most frequently encountered hospital infections and is an essential issue in the healthcare field. It is usually linked to a high mortality rate and prolonged hospitalization time. There is a lack of treatment, so alternative solutions must be continuously sought. The endotracheal tube is an indwelling device that is a significant culprit for ventilator-associated pneumonia because its surface can be colonized by different types of pathogens, which generate a multispecies biofilm. In the paper, we discuss the definition of ventilator-associated pneumonia, the economic burdens, and its outcomes. Then, we present the latest technological solutions for endotracheal tube surfaces, such as active antimicrobial coatings, passive coatings, and combinatorial methods, with examples from the literature. We end our analysis by identifying the gaps existing in the present research and investigating future possibilities that can decrease ventilator-associated pneumonia cases and improve patient comfort during treatment.

3.
Materials (Basel) ; 16(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444822

RESUMEN

The most critical shortcoming of magnesium alloys from the point of view of medical devices is the high corrosion rate, which is not well-correlated with clinical needs. It is well- known that rapid degradation occurs when an implant made of Mg-based alloys is placed inside the human body. Consequently, the implant loses its mechanical properties and failure can occur even if it is not completely degraded. The corrosion products that appear after Mg-based alloy degradation, such as H2 and OH- can have an essential role in decreasing biocompatibility due to the H2 accumulation process in the tissues near the implant. In order to control the degradation process of the Mg-based alloys, different coatings could be applied. The aim of the current paper is to evaluate the effect of fluoride coatings on the corrosion behavior of magnesium alloys from the system Mg-Zn-Ca-Mn potentially used for orthopedic trauma implants. The main functional properties required for the magnesium alloys to be used as implant materials, such as surface properties and corrosion behavior, were studied before and after surface modifications by fluoride conversion, with and without preliminary sandblasting, of two magnesium alloys from the system Mg-Zn-Ca-Mn. The experimental results showed that chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental magnesium alloys from the Mg-Zn-Ca-Mn system. Also, high surface free energy values obtained for the alloys treated with hydrofluoric acid correlated with wettability lead to the conclusion that there is an increased chance for biological factor adsorption and cell proliferation. Chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental Mg-Zn-Ca-Mn alloys.

4.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445718

RESUMEN

Hemorrhage is a detrimental event present in traumatic injury, surgery, and disorders of bleeding that can become life-threatening if not properly managed. Moreover, uncontrolled bleeding can complicate surgical interventions, altering the outcome of surgical procedures. Therefore, to reduce the risk of complications and decrease the risk of morbidity and mortality associated with hemorrhage, it is necessary to use an effective hemostatic agent that ensures the immediate control of bleeding. In recent years, there have been increasingly rapid advances in developing a novel generation of biomaterials with hemostatic properties. Nowadays, a wide array of topical hemostatic agents is available, including chitosan-based biomaterials that have shown outstanding properties such as antibacterial, antifungal, hemostatic, and analgesic activity in addition to their biocompatibility, biodegradability, and wound-healing effects. This review provides an analysis of chitosan-based hemostatic biomaterials and discusses the progress made in their performance, mechanism of action, efficacy, cost, and safety in recent years.


Asunto(s)
Quitosano , Hemostáticos , Humanos , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Quitosano/farmacología , Quitosano/uso terapéutico , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Hemostasis , Hemorragia/tratamiento farmacológico , Hemorragia/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...