Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862471

RESUMEN

We present a simple motorized rotation mount for a half-wave plate that can be used to rapidly change the polarization of light. We use the device to switch a high power laser beam between different optical dipole traps in an ultracold atom experiment. The device uses a stepper motor with a hollow shaft, which allows a beam to propagate along the axis of the motor shaft, minimizing inertia and mechanical complexity. A simple machined adapter is used to mount the wave plate. We characterize the performance of the device, focusing on its capability to switch a beam between the output ports of a polarizing beam splitter cube. We demonstrate a switching time of 15.9(3) ms, limited by the torque of the motor. The mount has a reaction time of 0.52(3) ms and a rotational resolution of 0.45(4)°. The rotation is highly reproducible, with the stepper motor not missing a step in 2000 repeated tests over 11 h.

2.
Phys Rev Lett ; 131(1): 013401, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478436

RESUMEN

We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers. The molecule is formed by magnetoassociation of a Rb+Cs atom pair and subsequently transferred to the rovibrational ground state with an efficiency of 91(1)%. Species-specific tweezers are used to control the separation between the atom and molecule. The charge-dipole interaction causes blockade of the transition to the Rb(52s) Rydberg state, when the atom-molecule separation is set to 310(40) nm. The observed excitation dynamics are in good agreement with simulations using calculated interaction potentials. Our results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.

3.
Phys Rev Lett ; 130(22): 223401, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37327422

RESUMEN

We demonstrate the formation of a single RbCs molecule during the merging of two optical tweezers, one containing a single Rb atom and the other a single Cs atom. Both atoms are initially predominantly in the motional ground states of their respective tweezers. We confirm molecule formation and establish the state of the molecule formed by measuring its binding energy. We find that the probability of molecule formation can be controlled by tuning the confinement of the traps during the merging process, in good agreement with coupled-channel calculations. We show that the conversion efficiency from atoms to molecules using this technique is comparable to magnetoassociation.


Asunto(s)
Eritrocitos , Pinzas Ópticas , Movimiento (Física) , Probabilidad
4.
Science ; 375(6584): 975-976, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239362

RESUMEN

Magnetic fields can be used to change chemical reaction rates by a factor of 100.


Asunto(s)
Campos Magnéticos , Factores de Tiempo
5.
Phys Chem Chem Phys ; 22(47): 27529-27538, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33079114

RESUMEN

We explore coherent multi-photon processes in 87Rb133Cs molecules using 3-level lambda and ladder configurations of rotational and hyperfine states, and discuss their relevance to future applications in quantum computation and quantum simulation. In the lambda configuration, we demonstrate the driving of population between two hyperfine levels of the rotational ground state via a two-photon Raman transition. Such pairs of states may be used in the future as a quantum memory, and we measure a Ramsey coherence time for a superposition of these states of 58(9) ms. In the ladder configuration, we show that we can generate and coherently populate microwave dressed states via the observation of an Autler-Townes doublet. We demonstrate that we can control the strength of this dressing by varying the intensity of the microwave coupling field. Finally, we perform spectroscopy of the rotational states of 87Rb133Cs up to N = 6, highlighting the potential of ultracold molecules for quantum simulation in synthetic dimensions. By fitting the measured transition frequencies we determine a new value of the centrifugal distortion coefficient Dv = h × 207.3(2) Hz.

6.
Phys Rev Lett ; 124(16): 163402, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32383932

RESUMEN

We show that the lifetime of ultracold ground-state ^{87}Rb^{133}Cs molecules in an optical trap is limited by fast optical excitation of long-lived two-body collision complexes. We partially suppress this loss mechanism by applying square-wave modulation to the trap intensity, such that the molecules spend 75% of each modulation cycle in the dark. By varying the modulation frequency, we show that the lifetime of the collision complex is 0.53±0.06 ms in the dark. We find that the rate of optical excitation of the collision complex is 3_{-2}^{+4}×10^{3} W^{-1} cm^{2} s^{-1} for λ=1550 nm, leading to a lifetime of <100 ns for typical trap intensities. These results explain the two-body loss observed in experiments on nonreactive bialkali molecules.

7.
Nat Commun ; 10(1): 3104, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308368

RESUMEN

Understanding and controlling collisions is crucial to the burgeoning field of ultracold molecules. All experiments so far have observed fast loss of molecules from the trap. However, the dominant mechanism for collisional loss is not well understood when there are no allowed 2-body loss processes. Here we experimentally investigate collisional losses of nonreactive ultracold 87Rb133Cs molecules, and compare our findings with the sticky collision hypothesis that pairs of molecules form long-lived collision complexes. We demonstrate that loss of molecules occupying their rotational and hyperfine ground state is best described by second-order rate equations, consistent with the expectation for complex-mediated collisions, but that the rate is lower than the limit of universal loss. The loss is insensitive to magnetic field but increases for excited rotational states. We demonstrate that dipolar effects lead to significantly faster loss for an incoherent mixture of rotational states.

8.
Chemphyschem ; 17(22): 3811-3817, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27378150

RESUMEN

We present the production of ultracold 87 RbCs molecules in the electronic, rovibrational and hyperfine ground state, using stimulated Raman adiabatic passage to transfer the molecules from a weakly bound Feshbach state. We measure one-way transfer efficiencies of 92(1)% and fully characterise the strengths and linewidths of the transitions used. We model the transfer, including a Monte Carlo simulation of the laser noise, and find this matches well with both the transfer efficiency and our previous measurements of the laser linewidth and frequency stability.

9.
Phys Rev Lett ; 113(25): 255301, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25554891

RESUMEN

We report the creation of a sample of over 1000 ultracold ^{87}Rb^{133}Cs molecules in the lowest rovibrational ground state, from an atomic mixture of ^{87}Rb and ^{133}Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated Raman adiabatic passage (STIRAP). We measure the binding energy of the RbCs molecule to be hc×3811.576(1) cm^{-1} and the |v^{''}=0,J^{''}=0⟩ to |v^{''}=0,J^{''}=2⟩ splitting to be h×2940.09(6) MHz. Stark spectroscopy of the rovibrational ground state yields an electric dipole moment of 1.225(3)(8) D, where the values in parentheses are the statistical and systematic uncertainties, respectively. We can access a space-fixed dipole moment of 0.355(2)(4) D, which is substantially higher than in previous work.

10.
Phys Rev Lett ; 111(10): 100406, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-25166639

RESUMEN

We investigate numerically the collisions of two distinguishable quantum matter-wave bright solitons in a one-dimensional harmonic trap. We show that such collisions can be used to generate mesoscopic Bell states that can reliably be distinguished from statistical mixtures. Calculation of the relevant s-wave scattering lengths predicts that such states could potentially be realized in quantum-degenerate mixtures of 85Rb and 133Cs. In addition to fully quantum simulations for two distinguishable two-particle solitons, we use a mean-field description supplemented by a stochastic treatment of quantum fluctuations in the soliton's center of mass: we demonstrate the validity of this approach by comparison to a mathematically rigorous effective potential treatment of the quantum many-particle problem.

11.
Opt Lett ; 36(1): 64-6, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21209688

RESUMEN

We present a simple technique for stabilization of a laser frequency off resonance using the Faraday effect in a heated vapor cell with an applied magnetic field. In particular, we demonstrate stabilization of a 780 nm laser detuned up to 14 GHz from the (85)Rb D(2) 5(2)S(1/2) F = 2 to 5(2)P(3/2) F' = 3 transition. Control of the temperature of the vapor cell and the magnitude of the applied magnetic field allows locking ~6-14 GHz red and blue detuned from the atomic line. We obtain an rms fluctuation of 7 MHz over 1 h without stabilization of the cell temperature or magnetic field.

12.
Rev Sci Instrum ; 78(9): 093106, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17902946

RESUMEN

The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

13.
Phys Rev Lett ; 96(17): 170401, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16712280

RESUMEN

We observe bright matter-wave solitons form during the collapse of (85)Rb condensates in a three-dimensional (3D) magnetic trap. The collapse is induced by using a Feshbach resonance to suddenly switch the atomic interactions from repulsive to attractive. Remnant condensates containing several times the critical number of atoms for the onset of instability are observed to survive the collapse. Under these conditions a highly robust configuration of 3D solitons forms such that each soliton satisfies the condition for stability and neighboring solitons exhibit repulsive interactions.

14.
Philos Trans A Math Phys Eng Sci ; 361(1813): 2699-713, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14667293

RESUMEN

When the atoms in a gas are cooled to extremely low temperatures, their quantum-mechanical nature starts to dominate the properties of the whole gas. Under the appropriate conditions, the atoms will 'condense' into a single quantum state of the system-a phenomenon known as Bose-Einstein condensation (BEC). The resulting 'condensate' behaves as a single, observable quantum-mechanical object. During the last decade, this new state of matter has displayed many remarkable properties. In this paper, we review some of the most recent experimental developments in the BEC field, highlighting the role of atomic interactions and the high degree of control with which condensates may be manipulated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...