Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 14: 1146094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325225

RESUMEN

Background: There is evidence that ambulatory people with incomplete spinal cord injury (iSCI) have an impaired ability to control lateral motion of their whole-body center of mass (COM) during walking. This impairment is believed to contribute to functional deficits in gait and balance, however that relationship is unclear. Thus, this cross-sectional study examines the relationship between the ability to control lateral COM motion during walking and functional measures of gait and balance in people with iSCI. Methods: We assessed the ability to control lateral COM motion during walking and conducted clinical gait and balance outcome measures on 20 ambulatory adults with chronic iSCI (C1-T10 injury, American Spinal Injury Association Impairment Scale C or D). To assess their ability to control lateral COM motion, participants performed three treadmill walking trials. During each trial, real-time lateral COM position and a target lane were projected on the treadmill. Participants were instructed to keep their lateral COM position within the lane. If successful, an automated control algorithm progressively reduced the lane width, making the task more challenging. If unsuccessful, the lane width increased. The adaptive lane width was designed to challenge each participant's maximum capacity to control lateral COM motion during walking. To quantify control of lateral COM motion, we calculated lateral COM excursion during each gait cycle and then identified the minimum lateral COM excursion occurring during five consecutive gait cycles. Our clinical outcome measures were Berg Balance Scale (BBS), Timed Up and Go test (TUG), 10-Meter Walk Test (10MWT) and Functional Gait Assessment (FGA). We used a Spearman correlation analysis (ρ) to examine the relationship between minimum lateral COM excursion and clinical measures. Results: Minimum lateral COM excursion had significant moderate correlations with BBS (ρ = -0.54, p = 0.014), TUG (ρ = 0.59, p = 0.007), FGA (ρ = -0.59, p = 0.007), 10MWT-preferred (ρ = -0.59, p = 0.006) and 10MWT-fast (ρ = -0.68, p = 0.001). Conclusion: Control of lateral COM motion during walking is associated with a wide range of clinical gait and balance measures in people with iSCI. This finding suggests the ability to control lateral COM motion during walking could be a contributing factor to gait and balance in people with iSCI.

2.
Artículo en Inglés | MEDLINE | ID: mdl-33835919

RESUMEN

Individuals with stroke often have difficulty modulating their lateral foot placement during gait, a primary strategy for maintaining lateral stability. Our purpose was to understand how individuals with and without stroke adapt their lateral foot placement when walking in an environment that alters center of mass (COM) dynamics and the mechanical requirement to maintain lateral stability. The treadmill walking environments included: 1) a Null Field- where no forces were applied, and 2) a Damping Field- where external forces opposed lateral COM velocity. To evaluate the response to the changes in environment, we quantified the correlation between lateral COM state and lateral foot placement (FP), as well as step width mean and variability. We hypothesized the Damping Field would produce a stabilizing effect and reduce both the COM-FP correlation strength and step width compared to the Null Field. We also hypothesized that individuals with stroke would have a significantly weaker COM-FP correlation than individuals without stroke. Surprisingly, we found no differences in COM-FP correlations between the Damping and Null Fields. We also found that compared to individuals without stroke in the Null Field, individuals with stroke had weaker COM-FP correlations (Paretic < Control: p =0.001 , Non-Paretic < Control: p =0.007 ) and wider step widths (p =0.001 ). Our results suggest that there is a post-stroke shift towards a non-specific lateral stabilization strategy that relies on wide steps that are less correlated to COM dynamics than in individuals without stroke.


Asunto(s)
Pie , Accidente Cerebrovascular , Adaptación Fisiológica , Fenómenos Biomecánicos , Marcha , Humanos , Equilibrio Postural , Caminata
3.
J Neuroeng Rehabil ; 18(1): 46, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653370

RESUMEN

BACKGROUND: Many people with incomplete spinal cord injury (iSCI) have the ability to maneuver while walking. However, neuromuscular impairments create challenges to maintain stability. How people with iSCI maintain stability during walking maneuvers is poorly understood. Thus, this study compares maneuver performance in varying external conditions between persons with and without iSCI to better understand maneuver stabilization strategies in people with iSCI. METHODS: Participants with and without iSCI walked on a wide treadmill and were prompted to perform lateral maneuvers between bouts of straight walking. Lateral force fields applied to the participants' center of mass amplified or attenuated the participants' movements, thereby increasing the capability of the study to capture behavior at varied levels of challenge to stability. RESULTS: By examining metrics of stability, step width, and center of mass dynamics, distinct strategies emerged following iSCI. The minimum margin of stability (MOSmin) on each step during maneuvers indicated persons with iSCI generally adapted to amplified and attenuated force fields with increased stability compared to persons without iSCI, particularly using increased step width and reduced center of mass excursion on maneuver initiation. In the amplified field, however, persons with iSCI had a reduced MOSmin when terminating a maneuver, likely due to the challenge of the force field opposing the necessary lateral braking. Persons without iSCI were more likely to rely on or oppose the force field when appropriate for movement execution. Compared to persons with iSCI, they reduced their MOSmin to initiate maneuvers in the attenuated and amplified fields and increased their MOSmin to arrest maneuvers in the amplified field. CONCLUSIONS: The different force fields were successful in identifying relatively subtle strategy differences between persons with and without iSCI. Specifically, persons with iSCI adopted increased step width and reduction in center of mass excursion to increase maneuver stability in the amplified field. The amplified field may provoke practice of stable and efficient initiation and arrest of walking maneuvers. Overall, this work allows better framing of the stability mechanisms used following iSCI to perform walking maneuvers.


Asunto(s)
Adaptación Fisiológica/fisiología , Equilibrio Postural/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Adulto , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Caminata/fisiología
4.
Front Rehabil Sci ; 2: 709420, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36188795

RESUMEN

Gait rehabilitation following incomplete spinal cord injury (iSCI) often aims to enhance speed and stability. Concurrently increasing both may be difficult though as certain stabilization strategies will be compromised at faster speeds. To evaluate the interaction between speed and lateral stability, we examined individuals with (n = 12) and without (n = 12) iSCI as they performed straight walking and lateral maneuvers at Preferred and Fast treadmill speeds. To better detect the effects of speed on stability, we challenged lateral stability with a movement amplification force field. The Amplification field, created by a cable-driven robot, applied lateral forces to the pelvis that were proportional to the real-time lateral center of mass (COM) velocity. While we expected individuals to maintain stability during straight walking at the Fast speed in normal conditions, we hypothesized that both groups would be less stable in the Amplification field at the Fast speed compared to the Preferred. However, we found no effects of speed or the interaction between speed and field on straight-walking stability [Lyapunov exponent or lateral margin of stability (MOS)]. Across all trials at the Fast speed compared to the Preferred, there was greater step width variability (p = 0.031) and a stronger correlation between lateral COM state at midstance and the subsequent lateral foot placement. These observations suggest that increased stepping variability at faster speeds may be beneficial for COM control. We hypothesized that during lateral maneuvers in the Amplification field, MOS on the Initiation and Termination steps would be smaller at the Fast speed than at the Preferred. We found no effect of speed on the Initiation step MOS within either field (p > 0.350) or group (p > 0.200). The Termination step MOS decreased at the Fast speed within the group without iSCI (p < 0.001), indicating a trade-off between lateral stability and forward walking speed. Unexpectedly, participants took more steps and time to complete maneuvers at the Fast treadmill speed in the Amplification field. This strategy prioritizing stability over speed was especially evident in the group with iSCI. Overall, individuals with iSCI were able to maintain lateral stability when walking fast in balance-challenging conditions but may have employed more cautious maneuver strategies.

5.
Artículo en Inglés | MEDLINE | ID: mdl-33345030

RESUMEN

Auditory feedback may provide the nervous system with valuable temporal (e. g., footstep sounds) and spatial (e.g., external reference sounds) information that can assist in the control of upright walking. As such, hearing loss may directly contribute to declines in mobility among older adults. Our purpose was to examine the impact of auditory feedback on the control of walking in older adults. Twenty older adults (65-86 years) with no diagnosed hearing loss walked on a treadmill for three sound conditions: Baseline, Ear Plugs, and White Noise. We hypothesized that in response to reduced temporal auditory feedback during the Ear Plugs and White Noise conditions, participants would adapt shorter and faster steps that are traditionally believed to increase mechanical stability. This hypothesis was not supported. Interestingly, we observed increases in step length (p = 0.047) and step time (p = 0.026) during the Ear Plugs condition vs. Baseline. Taking longer steps during the Ear Plugs condition may have increased ground reaction forces, thus allowing participants to sense footsteps via an occlusion effect. As a follow-up, we performed a Pearson's correlation relating the step length increase during the Ear Plugs condition to participants' scores on a clinical walking balance test, the Functional Gait Assessment. We found a moderate negative relationship (rho = -0.44, p = 0.055), indicating that participants with worse balance made the greatest increases in step length during the Ear Plugs condition. This trend suggests that participants may have actively sought auditory feedback with longer steps, sacrificing a more mechanically stable stepping pattern. We also hypothesized that reduced spatial localization feedback during the Ear Plugs and White Noise conditions would decrease control of center of mass (COM) dynamics, resulting in an increase in lateral COM excursion, lateral margin of stability, and maximum Lyapunov exponent. However, we found no main effects of auditory feedback on these metrics (p = 0.580, p = 0.896, and p = 0.056, respectively). Overall, these results suggest that during a steady-state walking task, healthy older adults can maintain walking control without auditory feedback. However, increases in step length observed during the Ear Plugs condition suggest that temporal auditory cues provide locomotor feedback that becomes increasingly valuable as balance deteriorates with age.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...