Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 10(11)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217953

RESUMEN

Introduction. The acquired muscle paralysis associated with modern critical care can be of neurogenic or myogenic origin, yet the distinction between these origins is hampered by the precision of current diagnostic methods. This has resulted in the pooling of all acquired muscle paralyses, independent of their origin, into the term Intensive Care Unit Acquired Muscle Weakness (ICUAW). This is unfortunate since the acquired neuropathy (critical illness polyneuropathy, CIP) has a slower recovery than the myopathy (critical illness myopathy, CIM); therapies need to target underlying mechanisms and every patient deserves as accurate a diagnosis as possible. This study aims at evaluating different diagnostic methods in the diagnosis of CIP and CIM in critically ill, immobilized and mechanically ventilated intensive care unit (ICU) patients. Methods. ICU patients with acquired quadriplegia in response to critical care were included in the study. A total of 142 patients were examined with routine electrophysiological methods, together with biochemical analyses of myosin:actin (M:A) ratios of muscle biopsies. In addition, comparisons of evoked electromyographic (EMG) responses in direct vs. indirect muscle stimulation and histopathological analyses of muscle biopsies were performed in a subset of the patients. Results. ICU patients with quadriplegia were stratified into five groups based on the hallmark of CIM, i.e., preferential myosin loss (myosin:actin ratio, M:A) and classified as severe (M:A < 0.5; n = 12), moderate (0.5 ≤ M:A < 1; n = 40), mildly moderate (1 ≤ M:A < 1.5; n = 49), mild (1.5 ≤ M:A < 1.7; n = 24) and normal (1.7 ≤ M:A; n = 19). Identical M:A ratios were obtained in the small (4-15 mg) muscle samples, using a disposable semiautomatic microbiopsy needle instrument, and the larger (>80 mg) samples, obtained with a conchotome instrument. Compound muscle action potential (CMAP) duration was increased and amplitude decreased in patients with preferential myosin loss, but deviations from this relationship were observed in numerous patients, resulting in only weak correlations between CMAP properties and M:A. Advanced electrophysiological methods measuring refractoriness and comparing CMAP amplitude after indirect nerve vs. direct muscle stimulation are time consuming and did not increase precision compared with conventional electrophysiological measurements in the diagnosis of CIM. Low CMAP amplitude upon indirect vs. direct stimulation strongly suggest a neurogenic lesion, i.e., CIP, but this was rarely observed among the patients in this study. Histopathological diagnosis of CIM/CIP based on enzyme histochemical mATPase stainings were hampered by poor quantitative precision of myosin loss and the impact of pathological findings unrelated to acute quadriplegia. Conclusion. Conventional electrophysiological methods are valuable in identifying the peripheral origin of quadriplegia in ICU patients, but do not reliably separate between neurogenic vs. myogenic origins of paralysis. The hallmark of CIM, preferential myosin loss, can be reliably evaluated in the small samples obtained with the microbiopsy instrument. The major advantage of this method is that it is less invasive than conventional muscle biopsies, reducing the risk of bleeding in ICU patients, who are frequently receiving anticoagulant treatment, and it can be repeated multiple times during follow up for monitoring purposes.

2.
Acta Physiol (Oxf) ; 225(2): e13172, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30120816

RESUMEN

AIM: Critical illness myopathy (CIM) is a consequence of modern critical care, leading to skeletal muscle atrophy/paralysis with negative consequences for mortality/morbidity and health care costs. Glucocorticoids (GCs) have been proposed to trigger CIM. Here, we compare outcomes of two GCs, the commonly used prednisolone and the newly developed dissociative vamorolone in response to the intensive care unit (ICU) condition for 5 days, ie, sedation, immobilization, and mechanical ventilation. METHODS: Rats were divided into a 0-day sham-operated control group, and three groups exposed to 5 days ICU condition during treatment with prednisolone (PRED) or vamorolone (VAM) or none of these GCs (ICU-group). Survival, body and muscle weights, cytokine concentrations, regulation of muscle contraction in single fast- and slow-twitch muscle fibres, myofibrillar protein expression and protein degradation pathways were studied. RESULTS: Critical illness myopathy geno- and pheno-types were confirmed in the ICU group. However, VAM and PRED groups showed reduced atrophy/weakness than the ICU group, and muscle specific differences with more severe negative effects on fast-twitch muscle fibres in the PRED than the other groups. CONCLUSION: These results show that vamorolone provides a GC intervention superior to typical GCs in improving CIM outcomes. Further, the findings do not support the notion that moderate-dose GC treatment represents a factor triggering CIM.


Asunto(s)
Antiinflamatorios/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/tratamiento farmacológico , Pregnadienodioles/uso terapéutico , Animales , Proteínas Contráctiles/metabolismo , Enfermedad Crítica , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Prednisolona/uso terapéutico , Ratas , Ratas Sprague-Dawley
3.
J Physiol ; 594(15): 4371-88, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26990577

RESUMEN

KEY POINTS: Using an experimental rat intensive care unit (ICU) model, not limited by early mortality, we have previously shown that passive mechanical loading attenuates the loss of muscle mass and force-generation capacity associated with the ICU intervention. Mitochondrial dynamics have recently been shown to play a more important role in muscle atrophy than previously recognized. In this study we demonstrate that mitochondrial dynamics, as well as mitophagy, is affected by mechanosensing at the transcriptional level, and muscle changes induced by unloading are counteracted by passive mechanical loading. The recently discovered ubiquitin ligases Fbxo31 and SMART are induced by mechanical silencing, an induction that similarly is prevented by passive mechanical loading. ABSTRACT: The complete loss of mechanical stimuli of skeletal muscles, i.e. loss of external strain related to weight bearing and internal strain related to activation of contractile proteins, in mechanically ventilated, deeply sedated and/or pharmacologically paralysed intensive care unit (ICU) patients is an important factor triggering the critical illness myopathy (CIM). Using a unique experimental ICU rat model, mimicking basic ICU conditions, we have recently shown that mechanical silencing is a dominant factor triggering the preferential loss of myosin, muscle atrophy and decreased specific force in fast- and slow-twitch muscles and muscle fibres. The aim of this study is to gain improved understanding of the gene signature and molecular pathways regulating the process of mechanical activation of skeletal muscle that are affected by the ICU condition. We have focused on pathways controlling myofibrillar protein synthesis and degradation, mitochondrial homeostasis and apoptosis. We demonstrate that genes regulating mitochondrial dynamics, as well as mitophagy are induced by mechanical silencing and that these effects are counteracted by passive mechanical loading. In addition, the recently identified ubiquitin ligases Fbxo31 and SMART are induced by mechanical silencing, an induction that is reversed by passive mechanical loading. Thus, mechano-cell signalling events are identified which may play an important role for the improved clinical outcomes reported in response to the early mobilization and physical therapy in immobilized ICU patients.


Asunto(s)
Enfermedad Crítica , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Animales , Femenino , Perfilación de la Expresión Génica , Inmunoglobulina G/metabolismo , Unidades de Cuidados Intensivos , Atrofia Muscular/metabolismo , Ventilación Pulmonar , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...