Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Nutr ; 11: 1346706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425482

RESUMEN

Introduction: Macrofungi, such as edible mushrooms, have been used as a valuable medical resource for millennia as a result of their antibacterial and immuno-modulatory components. Mushrooms contain dietary fibers known as ß-glucans, a class of polysaccharides previously linked to the induction of Trained Immunity. However, little is known about the ability of mushroom-derived ß-glucans to induce Trained Immunity. Methods & results: Using various powdered forms of the white button mushroom (Agaricus bisporus), we found that mouse macrophages pre-treated with whole mushroom powder (WMP) displayed enhanced responses to restimulation with TLR ligands, being particularly sensitive to Toll-like receptor (TLR)-2 stimulation using synthetic lipopeptides. This trained response was modest compared to training observed with yeast-derived ß-glucans and correlated with the amount of available ß-glucans in the WMP. Enriching for ß-glucans content using either a simulated in-vitro digestion or chemical fractionation retained and boosted the trained response with WMP, respectively. Importantly, both WMP and digested-WMP preparations retained ß-glucans as identified by nuclear magnetic resonance analysis and both displayed the capacity to train human monocytes and enhanced responses to restimulation. To determine if dietary incorporation of mushroom products can lead to Trained Immunity in myeloid cells in vivo, mice were given a regimen of WMP by oral gavage prior to sacrifice. Flow cytometric analysis of bone-marrow progenitors indicated alterations in hematopoietic stem and progenitor cells population dynamics, with shift toward myeloid-committed multi-potent progenitor cells. Mature bone marrow-derived macrophages derived from these mice displayed enhanced responses to restimulation, again particularly sensitive to TLR2. Discussion: Taken together, these data demonstrate that ß-glucans from common macrofungi can train innate immune cells and could point to novel ways of delivering bio-available ß-glucans for education of the innate immune system.

2.
iScience ; 27(3): 109030, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361630

RESUMEN

Fungal ß-glucans are major drivers of trained immunity which increases long-term protection against secondary infections. Heterogeneity in ß-glucan source, structure, and solubility alters interaction with the phagocytic receptor Dectin-1 and could impact strategies to improve trained immunity in humans. Using a panel of diverse ß-glucans, we describe the ability of a specific yeast-derived whole-glucan particle (WGP) to reprogram metabolism and thereby drive trained immunity in human monocyte-derived macrophages in vitro and mice bone marrow in vivo. Presentation of pure, non-soluble, non-aggregated WGPs led to the formation of the Dectin-1 phagocytic synapse with subsequent lysosomal mTOR activation, metabolic reprogramming, and epigenetic rewiring. Intraperitoneal or oral administration of WGP drove bone marrow myelopoiesis and improved mature macrophage responses, pointing to therapeutic and food-based strategies to drive trained immunity. Thus, the investment of a cell in a trained response relies on specific recognition of ß-glucans presented on intact microbial particles through stimulation of the Dectin-1 phagocytic response.

3.
Mol Nutr Food Res ; 67(14): e2200845, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37195234

RESUMEN

SCOPE: Mushrooms are valued as an edible and medical resource for millennia. As macrofungi, they possess conserved molecular components recognized by innate immune cells like macrophages, yet unlike pathogenic fungi, they do not trigger the immune system in the same way. That these well-tolerated foods both avoid immuno-surveillance and have positive health benefits, highlights the dearth of information on the interactions of mushroom-derived products with the immune system. METHODS AND RESULTS: Using powders produced from the common white button mushroom, Agaricus bisporus, it is observed that pre-treatment of mouse and human macrophages with mushroom powders attenuates innate immune signaling triggered by microbial ligands like LPS and  ß-glucans, including NFκB activation and pro-inflammatory cytokine production. This effect of mushroom powders is observed at lower doses of TLR ligands, suggesting a model of competitive inhibition whereby mushroom compounds bind and occupy innate immune receptors, precluding activation by microbial stimuli. This effect is preserved following simulated digestion of the powders. Moreover, in vivo delivery of mushroom powders attenuates the development of colitis in a DSS-mouse model. CONCLUSION: This data highlights an important anti-inflammatory role for powdered A. bisporus mushrooms, which can be further utilized to develop complementary approaches to modulate chronic inflammation and disease.


Asunto(s)
Agaricus , Humanos , Ligandos , Polvos , Inmunidad Innata
4.
Int. j. clin. health psychol. (Internet) ; 23(2): 1-15, abr.-jun. 2023. ilus, tab
Artículo en Inglés | IBECS | ID: ibc-213895

RESUMEN

Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm. (AU)


Asunto(s)
Humanos , Alucinógenos , Microbiota , Psilocibina , Dietilamida del Ácido Lisérgico , N,N-Dimetiltriptamina
6.
Int J Clin Health Psychol ; 23(2): 100349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36605409

RESUMEN

Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.

7.
Phytomedicine ; 105: 154353, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932606

RESUMEN

BACKGROUND: A traditionally prepared aqueous extract (= decoction) of Houttuynia cordata Thunb (Yu xing cao) (HC) is widely used in Traditional Chinese Medicine (TCM) to treat inflammatory disease. Previous chemical and biological studies on HC have mainly focused on organic extracts rather than the aqueous decoction, which is the traditional formulation. PURPOSE: The study aimed to investigate whether the chemical composition of HC aqueous decoction (HCD) varies with geographical sourcing, to investigate the mechanism of action of HCD, and to determine if chemical variation impacts on HCDs anti-inflammatory activity. METHOD: Sixteen samples of HC were purchased from Sichuan, Hubei and Anhui provinces in the People's Republic of China (PRC) and were prepared by the traditional decoction method to yield their corresponding HCDs. A Quality Control (QC) sample was prepared by combining individual HCD extracts. HCDs were analysed by Nuclear Magnetic Resonance (NMR) and High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). The anti-inflammatory activities associated with intestinal barrier function of HCD were studied by tumor necrosis factor-α (TNF-α) activated Caco-2 monolayers in vitro and in vivo using Dextran Sulfate Sodium (DSS)-induced murine colitis. Proteins involved in inflammation, mRNA levels, disease severity scores, and histology involved in intestinal inflammation were analysed. RESULTS: HCD samples exhibited different chemical fingerprints and three regional outliers were identified by Principal Component Analysis (PCA). Fifteen phytochemical metabolites were identified and quantified. HCD showed in vitro anti-inflammatory activity, enhancing zonula occludens-1 (ZO-1), occludin, interleukin (IL)-10 and decreasing IL-1ß, IL-6 and epidermal growth factor receptor (EGFR) via an EGFR-dependent mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathway. This beneficial effect on intestinal inflammation was also seen in the in vivo colitis model at a molecular level in colonic tissues. CONCLUSION: This study shows that the test HCDs were chemically different, resulting in different levels of activity on intestinal barrier function and inflammation. Moreover, a "Daodi" product showed the greatest biological activity in this study, thus validating the importance of the "Daodi" quality material in TCM and supporting the traditional used of HCD for the treatment of inflammation.


Asunto(s)
Colitis , Houttuynia , Animales , Antiinflamatorios , Células CACO-2 , Sulfato de Dextran , Modelos Animales de Enfermedad , Receptores ErbB , Humanos , Inflamación , Sistema de Señalización de MAP Quinasas , Medicina Tradicional China , Ratones , Proteína Quinasa 3 Activada por Mitógenos , Mitógenos , Extractos Vegetales , Transducción de Señal
8.
Microorganisms ; 10(7)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35889102

RESUMEN

The use of probiotics such as Lactobacillus and Bifidobacterium spp. as a therapeutic against inflammatory bowel disease (IBD) is of significant interest. Lactobacillus salivarus strain UCC118TM is a commensal that has been shown to possess probiotic properties in vitro and anti-infective properties in vivo. However, the usefulness of UCC118 TM as a therapeutic against colitis remains unclear. This study investigates the probiotic potential of Lactobacillus salivarius, UCC118™ in a mouse model of colitis. DSS-induced colitis was coupled with pre-treatment or post-treatment with UCC118TM by daily oral gavage. In the pre-treatment model of colitis, UCC118TM reduced the severity of the disease in the early stages. Improvement in disease severity was coupled with an upregulation of tissue IL-10 levels and increased expression of macrophage M2 markers. This anti-inflammatory activity of UCC118TM was further confirmed in vitro, using a model of LPS-treated bone marrow-derived macrophages. Taken together, these results suggest that UCC118TM may promote the resolution of inflammation. This was supported in a mouse model of established DSS-induced colitis whereby UCC118TM treatment accelerated recovery, as evidenced by weight, stool, histological markers and the recovery of microbiome-associated dysbiosis with an increased abundance of beneficial commensal species. These results demonstrate the potential of Lactobacillus salivarius UCC118TM as a probiotic-based therapeutic strategy to promote health through the upregulation of anti-inflammatory IL-10 and protect against dysbiosis during IBD.

9.
Front Immunol ; 13: 840245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464397

RESUMEN

In recent decades, probiotic bacteria have become increasingly popular as a result of mounting scientific evidence to indicate their beneficial role in modulating human health. Although there is strong evidence associating various Lactobacillus probiotics to various health benefits, further research is needed, in particular to determine the various mechanisms by which probiotics may exert these effects and indeed to gauge inter-individual value one can expect from consuming these products. One must take into consideration the differences in individual and combination strains, and conditions which create difficulty in making direct comparisons. The aim of this paper is to review the current understanding of the means by which Lactobacillus species stand to benefit our gastrointestinal health.


Asunto(s)
Lactobacillus , Probióticos , Bacterias , Tracto Gastrointestinal/microbiología , Humanos , Probióticos/uso terapéutico
10.
Cells ; 10(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34943865

RESUMEN

Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.


Asunto(s)
Tracto Gastrointestinal/patología , Enfermedades Inflamatorias del Intestino/genética , Uniones Intercelulares/metabolismo , MicroARNs/metabolismo , Moco/metabolismo , Animales , Humanos , MicroARNs/genética , Permeabilidad
11.
Nutrients ; 13(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34959809

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disease. The disease has a multifactorial aetiology, involving genetic, microbial as well as environmental factors. The disease pathogenesis operates at the host-microbe interface in the gut. The intestinal epithelium plays a central role in IBD disease pathogenesis. Apart from being a physical barrier, the epithelium acts as a node that integrates environmental, dietary, and microbial cues to calibrate host immune response and maintain homeostasis in the gut. IBD patients display microbial dysbiosis in the gut, combined with an increased barrier permeability that contributes to disease pathogenesis. Metabolites produced by microbes in the gut are dynamic indicators of diet, host, and microbial interplay in the gut. Microbial metabolites are actively absorbed or diffused across the intestinal lining to affect the host response in the intestine as well as at systemic sites via the engagement of cognate receptors. In this review, we summarize insights from metabolomics studies, uncovering the dynamic changes in gut metabolite profiles in IBD and their importance as potential diagnostic and prognostic biomarkers of disease. We focus on gut microbial metabolites as key regulators of the intestinal barrier and their role in the pathogenesis of IBD.


Asunto(s)
Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , Metabolómica , Biomarcadores/metabolismo , Humanos , Permeabilidad , Pronóstico
12.
Front Cell Infect Microbiol ; 11: 622491, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34350128

RESUMEN

The metabolite-rich environment that is the intestinal lumen contains metabolic by-products deriving from microbial fermentation and host cell metabolism, with resident macrophages being constantly exposed to this metabolic flux. Succinate, lactate and itaconate are three metabolites secreted by primed macrophages due to a fragmented tri-carboxylic acid (TCA) cycle. Additionally, succinate and lactate are known by-products of microbial fermentation. How these metabolites impact biological functioning of resident macrophages particularly in response to bacterial infection remains poorly understood. We have investigated the potential influence of these metabolites on macrophage phagocytosis and clearance of Escherichia coli (E. coli) infection. Treatment of murine bone-marrow-derived macrophages (BMDMs) with succinate reduced numbers of intracellular E. coli early during infection, while lactate-treated BMDMs displayed no difference throughout the course of infection. Treatment of BMDMs with itaconate lead to higher levels of intracellular E. coli early in the infection with bacterial burden subsequently reduced at later time-points compared to untreated macrophages, indicative of enhanced engulfment and killing capabilities of macrophages in response to itaconate. Expression of engulfment mediators MARCKS, RhoB, and CDC42 were reduced or unchanged following succinate or lactate treatment and increased in itaconate-treated macrophages following E. coli infection. Nitric oxide (NO) levels varied while pro- and anti-inflammatory cytokines differed in secretory levels in all metabolite-treated macrophages post-infection with E. coli or in response to lipopolysaccharide (LPS) stimulation. Finally, the basal phenotypic profile of metabolite-treated macrophages was altered according to marker gene expression, describing how fluid macrophage phenotype can be in response to the microenvironment. Collectively, our data suggests that microbe- and host-derived metabolites can drive distinct macrophage functional phenotypes in response to infection, whereby succinate and itaconate regulate phagocytosis and bactericidal mechanisms, limiting the intracellular bacterial niche and impeding the pathogenesis of infection.


Asunto(s)
Infecciones Bacterianas , Escherichia coli , Animales , Lipopolisacáridos , Macrófagos , Ratones , Fagocitosis
13.
Cell Rep ; 30(1): 124-136.e4, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914380

RESUMEN

Increased glycolytic metabolism recently emerged as an essential process driving host defense against Mycobacterium tuberculosis (Mtb), but little is known about how this process is regulated during infection. Here, we observe repression of host glycolysis in Mtb-infected macrophages, which is dependent on sustained upregulation of anti-inflammatory microRNA-21 (miR-21) by proliferating mycobacteria. The dampening of glycolysis by miR-21 is mediated through targeting of phosphofructokinase muscle (PFK-M) isoform at the committed step of glycolysis, which facilitates bacterial growth by limiting pro-inflammatory mediators, chiefly interleukin-1ß (IL-1ß). Unlike other glycolytic genes, PFK-M expression and activity is repressed during Mtb infection through miR-21-mediated regulation, while other less-active isoenzymes dominate. Notably, interferon-γ (IFN-γ), which drives Mtb host defense, inhibits miR-21 expression, forcing an isoenzyme switch in the PFK complex, augmenting PFK-M expression and macrophage glycolysis. These findings place the targeting of PFK-M by miR-21 as a key node controlling macrophage immunometabolic function.


Asunto(s)
Glucólisis , Interacciones Huésped-Patógeno , Interleucina-1beta/metabolismo , MicroARNs/metabolismo , Mycobacterium tuberculosis/fisiología , Fosfofructoquinasa-1/metabolismo , Animales , Antiinflamatorios/metabolismo , Secuencia de Bases , Proliferación Celular , Células HEK293 , Humanos , Interferón gamma/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , MicroARNs/genética , Fosfofructoquinasa-1/genética , Células RAW 264.7 , Tuberculosis/microbiología
14.
Microorganisms ; 7(12)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818022

RESUMEN

The human gastrointestinal (GI) tract is a highly complex organ in which various dynamic physiological processes are tightly coordinated while interacting with a complex community of microorganisms. Within the GI tract, intestinal epithelial cells (IECs) create a structural interface that separates the intestinal lumen from the underlying lamina propria. In the lumen, gut-dwelling microbes play an essential role in maintaining gut homeostasis and functionality. Whether commensal or pathogenic, their interaction with IECs is inevitable. IECs and myeloid immune cells express an array of pathogen recognition receptors (PRRs) that define the interaction of both pathogenic and beneficial bacteria with the intestinal mucosa and mount appropriate responses including induction of barrier-related factors which enhance the integrity of the epithelial barrier. Indeed, the integrity of this barrier and induction of appropriate immune responses is critical to health status, with defects in this barrier and over-activation of immune cells by invading microbes contributing to development of a range of inflammatory and infectious diseases. This review describes the complexity of the GI tract and its interactions with gut bacteria.

15.
Cell Rep ; 29(1): 151-161.e5, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577945

RESUMEN

The NLRP3 inflammasome is a cytosolic complex sensing phagocytosed material and various damage-associated molecular patterns, triggering production of the pro-inflammatory cytokines interleukin-1 beta (IL)-1ß and IL-18 and promoting pyroptosis. Here, we characterize glutathione transferase omega 1-1 (GSTO1-1), a constitutive deglutathionylating enzyme, as a regulator of the NLRP3 inflammasome. Using a small molecule inhibitor of GSTO1-1 termed C1-27, endogenous GSTO1-1 knockdown, and GSTO1-1-/- mice, we report that GSTO1-1 is involved in NLRP3 inflammasome activation. Mechanistically, GSTO1-1 deglutathionylates cysteine 253 in NIMA related kinase 7 (NEK7) to promote NLRP3 activation. We therefore identify GSTO1-1 as an NLRP3 inflammasome regulator, which has potential as a drug target to limit NLRP3-mediated inflammation.


Asunto(s)
Glutatión Transferasa/metabolismo , Inflamasomas/metabolismo , Quinasas Relacionadas con NIMA/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Citocinas/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL
16.
Front Immunol ; 10: 1091, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139196

RESUMEN

The IL-1 cytokines are a newly expanded family, with each of its 11 members playing an important role in health and disease. Typically acting as pro- or anti-inflammatory mediators of first-line innate immunity, their production is particularly important in the context of mucosal defenses, through handling breach of the delicate epithelial barrier and mediating a local immune response to invading pathogens. Mucosal immunity is often aberrantly orchestrated in intestinal diseases, such as Inflammatory Bowel Disease (IBD). Various studies have pointed to IL-1 cytokines as being important players in IBD with context-dependent roles, either through promoting auto-inflammatory mechanisms, or alleviating disease through protection against breach of pathogens across the epithelial barrier. This mini-review will succinctly examine the role of IL-1 family members in IBD, with a special focus on the recently described IL-33 as well as IL-18, and will explore the disease models within which these cytokines have been studied. Furthermore, we will examine the evidence of interplay of these cytokines with the gut microbiota, with hopes of summarizing our current knowledge of these family members and their potential for unraveling novel molecular mechanisms of IBD pathology.


Asunto(s)
Susceptibilidad a Enfermedades , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucina-18/metabolismo , Interleucina-33/metabolismo , Interacciones Microbianas , Animales , Susceptibilidad a Enfermedades/inmunología , Microbioma Gastrointestinal/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/patología
17.
Nat Commun ; 9(1): 3728, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30214011

RESUMEN

Anti-microbial signaling pathways are normally triggered by innate immune receptors when detecting pathogenic microbes to provide protective immunity. Here we show that the inflammasome sensor Nlrp1 aggravates DSS-induced experimental mouse colitis by limiting beneficial, butyrate-producing Clostridiales in the gut. The colitis-protective effects of Nlrp1 deficiency are thus reversed by vancomycin treatment, but recapitulated with butyrate supplementation in wild-type mice. Moreover, an activating mutation in Nlrp1a increases IL-18 and IFNγ production, and decreases colonic butyrate to exacerbate colitis. We also show that, in patients with ulcerative colitis, increased NLRP1 in inflamed regions of the colon is associated with increased IFN-γ. In this context, NLRP1, IL-18 or IFN-γ expression negatively correlates with the abundance of Clostridiales in human rectal mucosal biopsies. Our data identify the NLRP1 inflammasome to be a key negative regulator of protective, butyrate-producing commensals, which therefore promotes inflammatory bowel disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Butiratos/metabolismo , Clostridiales , Enfermedades Inflamatorias del Intestino/metabolismo , Interferón gamma/metabolismo , Interleucina-18/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Colitis/metabolismo , Colon/patología , Femenino , Microbioma Gastrointestinal , Eliminación de Gen , Humanos , Inflamasomas , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas NLR , Recto/metabolismo , Transducción de Señal , Linfocitos T/citología , Vancomicina/farmacología
18.
J Crohns Colitis ; 12(7): 835-848, 2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29608690

RESUMEN

BACKGROUND AND AIMS: microRNAs regulate gene expression and influence the pathogenesis of human diseases. The present study investigated the role of microRNA-21 [miR-21] in the pathogenesis of intestinal inflammation, because miR-21 is highly expressed in inflammatory bowel disease. Inflammatory bowel disease is associated with intestinal barrier dysfunction and an altered gut microbiota. Recent studies have demonstrated that host microRNAs can shape the microbiota. Thus, we determined the influence of miR-21 on the gut microbiota and observed the subsequent impact in a dextran sodium sulphate [DSS]-induced colitis model. METHODS: The influence of miR-21 on the gut microbiota and inflammation was assessed in wild-type [WT] and miR-21-/- mice, in co-housed mice, following antibiotic depletion of the microbiota, or by colonization of germ-free [GF] mice with fecal homogenate, prior to DSS administration. We carried out 16S rRNA sequencing on WT and miR-21-/- mice to dissect potential differences in the gut microbiota. RESULTS: miR-21-/- mice have reduced susceptibility to DSS-induced colitis compared with WT mice. Co-housing conferred some protection to WT mice, while GF mice colonized with fecal homogenate from miR-21-/- were protected from DSS colitis compared with those colonized with WT homogenate. Further supporting a role for the microbiota in the observed phenotype, the protection afforded by miR-21 depletion was lost when mice were pre-treated with antibiotics. The 16S rRNA sequencing revealed significant differences in the composition of WT and miR-21-/- intestinal microbiota. CONCLUSIONS: These findings suggest that miR-21 influences the pathogenesis of intestinal inflammation by causing propagation of a disrupted gut microbiota.


Asunto(s)
Colitis/genética , Colitis/microbiología , Microbioma Gastrointestinal/genética , Predisposición Genética a la Enfermedad , MicroARNs/genética , Animales , Antibacterianos/farmacología , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Eliminación de Gen , Masculino , Ratones , Factores Protectores , ARN Ribosómico 16S/análisis
19.
Artículo en Inglés | MEDLINE | ID: mdl-28589100

RESUMEN

MiRNAs are important post-transcriptional regulators of gene expression. MiRNA expression is a crucial part of host responses to bacterial infection, however there is limited knowledge of their impact on the outcome of infections. We investigated the influence of miR-21 on macrophage responses during infection with Listeria monocytogenes, which establishes an intracellular niche within macrophages. MiR-21 is induced following infection of bone marrow-derived macrophages (BMDMs) with Listeria. MiR-21-/- macrophages display an increased bacterial burden with Listeria at 30 min and 2 h post-infection. This phenotype was reversed by the addition of synthetic miR-21 mimics to the system. To assess the immune response of wildtype (WT) and miR-21-/- macrophages, BMDMs were treated with bacterial LPS or infected with Listeria. There was no difference in IL-10 and IL-6 between WT and miR-21-/- BMDMs in response to LPS or Listeria. TNF-α was increased in miR-21-/- BMDMs stimulated with LPS or Listeria compared to WT macrophages. We next assessed the production of nitric oxide (NO), a key bactericidal factor in Listeria infection. There was no significant difference in NO production between WT and miR-21-/- cells, indicating that the increased bacterial burden may not be due to impaired killing. As the increased bacterial load was observed early following infection (30 min), we questioned whether this is due to differences in uptake of Listeria by WT and miR-21-/- macrophages. We show that miR-21-deficiency enhances uptake of FITC-dextran and FITC-Escherichia coli bioparticles by macrophages. The previously observed Listeria burden phenotype was ablated by pre-treatment of cells with the actin polymerization inhibitor cytochalasin-D. From analysis of miR-21 targets, we selected the pro-phagocytic regulators myristoylated alanine-rich C-kinase substrate (MARCKS) and Ras homolog gene family, member B (RhoB) for further investigation. MARCKS and RhoB are increased in miR-21-/- BMDMs, correlating with increased uptake of Listeria. Finally, intra-peritoneal infection of mice with Listeria led to increased bacterial burden in livers of miR-21-/- mice compared to WT mice. These findings suggest a possible role for miR-21 in regulation of phagocytosis during infection, potentially by repression of MARCKS and RhoB, thus serving to limit the availability of the intracellular niche of pathogens like L. monocytogenes.


Asunto(s)
Listeria monocytogenes/inmunología , Listeriosis/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , MicroARNs/metabolismo , Animales , Citocalasina D/metabolismo , Citocinas/metabolismo , Citoplasma/microbiología , Expresión Génica , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/inmunología , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Óxido Nítrico/metabolismo , Fagocitosis , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Unión al GTP rho/metabolismo
20.
Proc Natl Acad Sci U S A ; 113(48): E7778-E7787, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27856732

RESUMEN

The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1ß. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunidad Innata , Macrófagos/metabolismo , Piruvatos/metabolismo , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/inmunología , Animales , Línea Celular , Glucólisis , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Evasión Inmune , Indoles/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/parasitología , Lipopolisacáridos/farmacología , Macrófagos/parasitología , Ratones Endogámicos C57BL , Tripanosomiasis Africana/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...