Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(42): 22903-22912, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844092

RESUMEN

Organosilica nanoparticles that contain responsive organic building blocks as constitutive components of the silica network offer promising opportunities for the development of innovative drug formulations, biomolecule delivery, and diagnostic tools. However, the synthetic challenges required to introduce dynamic and multifunctional building blocks have hindered the realization of biomimicking nanoparticles. In this study, capitalizing on our previous research on responsive nucleic acid-based organosilica nanoparticles, we combine the supramolecular programmability of nucleic acid (NA) interactions with sol-gel chemistry. This approach allows us to create dynamic supramolecular bridging units of nucleic acids in a silica-based scaffold. Two peptide nucleic acid-based monoalkoxysilane derivatives, which self-assemble into a supramolecular bis-alkoxysilane through direct base pairing, were chosen as the noncovalent units inserted into the silica network. In addition, a bridging functional NA aptamer leads to the specific recognition of ATP molecules. In a one-step bottom-up approach, the resulting supramolecular building blocks can be used to prepare responsive organosilica nanoparticles. The supramolecular Watson-Crick-Franklin interactions of the organosilica nanoparticles result in a programmable response to external physical (i.e., temperature) and biological (i.e., DNA and ATP) inputs and thus pave the way for the rational design of multifunctional silica materials with application from drug delivery to theranostics.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Dióxido de Silicio/química , Adenosina Trifosfato
2.
J Am Chem Soc ; 145(42): 22896-22902, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37734737

RESUMEN

The development of smart nanoparticles (NPs) that encode responsive features in the structural framework promises to extend the applications of NP-based drugs, vaccines, and diagnostic tools. New nanocarriers would ideally consist of a minimal number of biocompatible components and exhibit multiresponsive behavior to specific biomolecules, but progress is limited by the difficulty of synthesizing suitable building blocks. Through a nature-inspired approach that combines the programmability of nucleic acid interactions and sol-gel chemistry, we report the incorporation of synthetic nucleic acids and analogs, as constitutive components, into organosilica NPs. We prepared different nanomaterials containing single-stranded nucleic acids that are covalently embedded in the silica network. Through the incorporation of functional nucleic acids into the organosilica framework, the particles respond to various biological, physical, and chemical inputs, resulting in detectable physicochemical changes. The one-step bottom-up approach used to prepare organosilica NPs provides multifunctional systems that combine the tunability of oligonucleotides with the stiffness, low cost, and biocompatibility of silica for different applications ranging from drug delivery to sensing.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silicio/química
3.
Pharmaceutics ; 15(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631335

RESUMEN

One of the most appealing approaches for regulating gene expression, named the "microRNA therapeutic" method, is based on the regulation of the activity of microRNAs (miRNAs), the intracellular levels of which are dysregulated in many diseases, including cancer. This can be achieved by miRNA inhibition with antimiRNA molecules in the case of overexpressed microRNAs, or by using miRNA-mimics to restore downregulated microRNAs that are associated with the target disease. The development of new efficient, low-toxic, and targeted vectors of such molecules represents a key topic in the field of the pharmacological modulation of microRNAs. We compared the delivery efficiency of a small library of cationic calix[4]arene vectors complexed with fluorescent antimiRNA molecules (Peptide Nucleic Acids, PNAs), pre-miRNA (microRNA precursors), and mature microRNAs, in glioma- and colon-cancer cellular models. The transfection was assayed by cytofluorimetry, cell imaging assays, and RT-qPCR. The calix[4]arene-based vectors were shown to be powerful tools to facilitate the uptake of both neutral (PNAs) and negatively charged (pre-miRNAs and mature microRNAs) molecules showing low toxicity in transfected cells and ability to compete with commercially available vectors in terms of delivery efficiency. These results could be of great interest to validate microRNA therapeutics approaches for future application in personalized treatment and precision medicine.

4.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012615

RESUMEN

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encodes for a chloride channel defective in Cystic Fibrosis (CF). Accordingly, upregulation of its expression might be relevant for the development of therapeutic protocols for CF. MicroRNAs are deeply involved in the CFTR regulation and their targeting with miRNA inhibitors (including those based on Peptide Nucleic Acids, PNAs)is associated with CFTR upregulation. Targeting of miR-145-5p, miR-101-3p, and miR-335-5p with antisense PNAs was found to be associated with CFTR upregulation. The main objective of this study was to verify whether combined treatments with the most active PNAs are associated with increased CFTR gene expression. The data obtained demonstrate that synergism of upregulation of CFTR production can be obtained by combined treatments of Calu-3 cells with antisense PNAs targeting CFTR-regulating microRNAs. In particular, highly effective combinations were found with PNAs targeting miR-145-5p and miR-101-3p. Content of mRNAs was analyzed by RT-qPCR, the CFTR production by Western blotting. Combined treatment with antagomiRNAs might lead to maximized upregulation of CFTR and should be considered in the development of protocols for CFTR activation in pathological conditions in which CFTR gene expression is lacking, such as Cystic Fibrosis.


Asunto(s)
Antagomirs , Fibrosis Quística , MicroARNs , Ácidos Nucleicos de Péptidos , Regiones no Traducidas 3' , Antagomirs/farmacología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , MicroARNs/genética , Ácidos Nucleicos de Péptidos/farmacología
5.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35890822

RESUMEN

In this paper, a novel platform for lab-in-fiber-based biosensors is studied. Hollow-core tube lattice fibers (HC-TLFs) are proposed as a label-free biosensor for the detection of DNA molecules. The particular light-guiding mechanism makes them a highly sensitive tool. Their transmission spectrum is featured by alternations of high and low transmittance at wavelength regions whose values depend on the thickness of the microstructured web composing the cladding around the hollow core. In order to achieve DNA detection by using these fibers, an internal chemical functionalization process of the fiber has been performed in five steps in order to link specific peptide nucleic acid (PNA) probes, then the functionalized fiber was used for a three-step assay. When a solution containing a particular DNA sequence is made to flow through the HC of the TLF in an 'optofluidic' format, a bio-layer is formed on the cladding surfaces causing a red-shift of the fiber transmission spectrum. By comparing the fiber transmission spectra before and after the flowing it is possible to identify the eventual formation of the layer and, therefore, the presence or not of a particular DNA sequence in the solution.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos de Péptidos , ADN/química , Sondas de Ácido Nucleico , Fibras Ópticas , Ácidos Nucleicos de Péptidos/química
6.
ACS Appl Mater Interfaces ; 14(17): 19204-19211, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446532

RESUMEN

Efficient and timely testing has taken center stage in the management, control, and monitoring of the current COVID-19 pandemic. Simple, rapid, cost-effective diagnostics are needed that can complement current polymerase chain reaction-based methods and lateral flow immunoassays. Here, we report the development of an electrochemical sensing platform based on single-walled carbon nanotube screen-printed electrodes (SWCNT-SPEs) functionalized with a redox-tagged DNA aptamer that specifically binds to the receptor binding domain of the SARS-CoV-2 spike protein S1 subunit. Single-step, reagentless detection of the S1 protein is achieved through a binding-induced, concentration-dependent folding of the DNA aptamer that reduces the efficiency of the electron transfer process between the redox tag and the electrode surface and causes a suppression of the resulting amperometric signal. This aptasensor is specific for the target S1 protein with a dissociation constant (KD) value of 43 ± 4 nM and a limit of detection of 7 nM. We demonstrate that the target S1 protein can be detected both in a buffer solution and in an artificial viral transport medium widely used for the collection of nasopharyngeal swabs, and that no cross-reactivity is observed in the presence of different, non-target viral proteins. We expect that this SWCNT-SPE-based format of electrochemical aptasensor will prove useful for the detection of other protein targets for which nucleic acid aptamer ligands are made available.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , COVID-19 , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
7.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209084

RESUMEN

Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of the tumors of the central nervous system, the median survival being 15 months. At present, no curative treatment is available for GBM and new drugs and therapeutic protocols are urgently needed. In this context, combined therapy appears to be a very interesting approach. The isothiocyanate sulforaphane (SFN) has been previously shown to induce apoptosis and inhibit the growth and invasion of GBM cells. On the other hand, the microRNA miR-15b is involved in invasiveness and proliferation in GBM and its inhibition is associated with the induction of apoptosis. On the basis of these observations, the objective of the present study was to determine whether a combined treatment using SFN and a peptide nucleic acid interfering with miR-15b-5p (PNA-a15b) might be proposed for increasing the pro-apoptotic effects of the single agents. To verify this hypothesis, we have treated GMB U251 cells with SFN alone, PNA-a15b alone or their combination. The cell viability, apoptosis and combination index were, respectively, analyzed by calcein staining, annexin-V and caspase-3/7 assays, and RT-qPCR for genes involved in apoptosis. The efficacy of the PNA-a15b determined the miR-15b-5p content analyzed by RT-qPCR. The results obtained indicate that SFN and PNA-a15b synergistically act in inducing the apoptosis of U251 cells. Therefore, the PNA-a15b might be proposed in a "combo-therapy" associated with SFN. Overall, this study suggests the feasibility of using combined treatments based on PNAs targeting miRNA involved in GBM and nutraceuticals able to stimulate apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Isotiocianatos/farmacología , MicroARNs/genética , Ácidos Nucleicos de Péptidos/farmacología , Sulfóxidos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioblastoma , Humanos
8.
ACS Biomater Sci Eng ; 8(10): 4123-4131, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34468123

RESUMEN

Peptide nucleic acids (PNAs) are a class of artificial oligonucleotide mimics that have garnered much attention as precision biotherapeutics for their efficient hybridization properties and their exceptional biological and chemical stability. However, the poor cellular uptake of PNA is a limiting factor to its more extensive use in biomedicine; encapsulation in nanoparticle carriers has therefore emerged as a strategy for internalization and delivery of PNA in cells. In this study, we demonstrate that PNA can be readily loaded into porous silicon nanoparticles (pSiNPs) following a simple salt-based trapping procedure thus far employed only for negatively charged synthetic oligonucleotides. We show that the ease and versatility of PNA chemistry also allows for producing PNAs with different net charge, from positive to negative, and that the use of differently charged PNAs enables optimization of loading into pSiNPs. Differently charged PNA payloads determine different release kinetics and allow modulation of the temporal profile of the delivery process. In vitro silencing of a set of specific microRNAs using a pSiNP-PNA delivery platform demonstrates the potential for biomedical applications.


Asunto(s)
MicroARNs , Nanopartículas , Ácidos Nucleicos de Péptidos , MicroARNs/genética , Nanopartículas/química , Oligonucleótidos , Ácidos Nucleicos de Péptidos/química , Porosidad , Silicio/química
9.
Cancers (Basel) ; 15(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36612125

RESUMEN

Liquid biopsy has dramatically changed cancer management in the last decade; however, despite the huge number of miRNA signatures available for diagnostic or prognostic purposes, it is still unclear if dysregulated miRNAs in the bloodstream could be used to develop miRNA-based therapeutic approaches. In one author's previous work, nine miRNAs were found to be dysregulated in early-stage colon cancer (CRC) patients by NGS analysis followed by RT-dd-PCR validation. In the present study, the biological effects of the targeting of the most relevant dysregulated miRNAs with anti-miRNA peptide nucleic acids (PNAs) were verified, and their anticancer activity in terms of apoptosis induction was evaluated. Our data demonstrate that targeting bloodstream up-regulated miRNAs using anti-miRNA PNAs leads to the down-regulation of target miRNAs associated with inhibition of the activation of the pro-apoptotic pathway in CRC cellular models. Moreover, very high percentages of apoptotic cells were found when the anti-miRNA PNAs were associated with other pro-apoptotic agents, such as sulforaphane (SFN). The presented data sustain the idea that the targeting of miRNAs up-regulated in the bloodstream with a known role in tumor pathology might be a tool for the design of protocols for anti-tumor therapy based on miRNA-targeting molecules.

10.
ACS Sens ; 6(6): 2307-2319, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34032412

RESUMEN

Standard protocols for the analysis of circulating tumor DNA (ctDNA) include the isolation of DNA from the patient's plasma and its amplification and analysis in buffered solutions. The application of such protocols is hampered by several factors, including the complexity and time-constrained preanalytical procedures, risks for sample contamination, extended analysis time, and assay costs. A recently introduced nanoparticle-enhanced surface plasmon resonance imaging-based assay has been shown to simplify procedures for the direct detection of tumor DNA in the patient's plasma, greatly simplifying the cumbersome preanalytical phase. To further simplify the protocol, a new dual-functional low-fouling poly-l-lysine (PLL)-based surface layer has been introduced that is described herein. The new PLL-based layer includes a densely immobilized CEEEEE oligopeptide to create a charge-balanced system preventing the nonspecific adsorption of plasma components on the sensor surface. The layer also comprises sparsely attached peptide nucleic acid probes complementary to the sequence of circulating DNA, e.g., the analyte that has to be captured in the plasma from cancer patients. We thoroughly investigated the contribution of each component of the dual-functional polymer to the antifouling properties of the surface layer. The low-fouling property of the new surface layer allowed us to detect wild-type and KRAS p.G12D-mutated DNA in human plasma at the attomolar level (∼2.5 aM) and KRAS p.G13D-mutated tumor DNA in liquid biopsy from a cancer patient with almost no preanalytical treatment of the patient's plasma, no need to isolate DNA from plasma, and without PCR amplification of the target sequence.


Asunto(s)
Neoplasias , Ácidos Nucleicos de Péptidos , ADN/genética , Humanos , Lisina , Neoplasias/genética , Resonancia por Plasmón de Superficie
11.
Anal Chim Acta ; 1153: 338297, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33714443

RESUMEN

A novel enzyme-labelled voltammetric magnetogenoassay for DNA sensing based on the use of carboxyl-surface coated magnetic microbeads functionalized with PNA probes and subsequent read-out on screen-printed electrode (SPE) substrates was developed. The assay was validated for determination of non-amplified genomic DNA from genetically modified Roundup Ready soy. Outstanding performance with respect to other genoassays requiring preliminary amplification of target DNA via PCR was demonstrated. The analytical performance was also improved compared to previous methods based on the immobilization of the same PNA probes on SPE substrates, since the method was found capable of achieving LOD and LOQ of 415 fM and 995 fM, respectively. The ability of the magnetogenoassay to detect the presence of Roundup Ready soy DNA sequence was tested on genomic DNA extract from European Reference Material soy flours, demonstrating the capability of the method to match the European Union regulation for labelling of food containing a percentage of GM products greater than 0,9%.


Asunto(s)
Glycine max , Fenómenos Magnéticos , ADN de Plantas , Microesferas , Plantas Modificadas Genéticamente/genética , Glycine max/genética
12.
Biomedicines ; 9(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530577

RESUMEN

(1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be up-regulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3'-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-335-5p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine.

13.
Org Lett ; 23(3): 902-907, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33417460

RESUMEN

A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, d-Lys- and d-Arg-based backbones were used to obtain positively charged PNAs with high optical purity, as inferred from chiral GC measurements. "Chiral-box" PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.


Asunto(s)
Arginina/química , ADN/química , Lisina/química , Ácidos Nucleicos de Péptidos/síntesis química , Estructura Molecular , Estereoisomerismo
14.
Methods Mol Biol ; 2211: 123-143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33336275

RESUMEN

The importance of peptide nucleic acids (PNAs) for alteration of gene expression is nowadays firmly established. PNAs are characterized by a pseudo-peptide backbone composed of N-(2-aminoethyl)glycine units and have been found to be excellent candidates for antisense and antigene therapies. Recently, PNAs have been demonstrated to alter the action of microRNAs and thus can be considered very important tools for miRNA therapeutics. In fact, the pharmacological modulation of microRNA activity appears to be a very interesting approach in the development of new types of drugs. Among the limits of PNAs in applied molecular biology, the delivery to target cells and tissues is of key importance. The aim of this chapter is to describe methods for the efficient delivery of unmodified PNAs designed to target microRNAs involved in cancer, using as model system miR-221-3p and human glioma cells as in vitro experimental cellular system. The methods employed to deliver PNAs targeting miR-221-3p here presented are based on a macrocyclic multivalent tetraargininocalix[4]arene used as non-covalent vector for anti-miR-221-3p PNAs. High delivery efficiency, low cytotoxicity, maintenance of the PNA biological activity, and easy preparation makes this vector a candidate for a universal delivery system for this class of nucleic acid analogs.


Asunto(s)
Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Ácidos Nucleicos de Péptidos/administración & dosificación , Apoptosis , Línea Celular , Supervivencia Celular/genética , Técnicas de Química Sintética , Humanos , MicroARNs/administración & dosificación , MicroARNs/química , MicroARNs/genética , Estructura Molecular , Ácidos Nucleicos de Péptidos/química
15.
Eur J Med Chem ; 209: 112876, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127171

RESUMEN

Since the identification of microRNAs (miRNAs) involved in the regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, miRNAs known to down-regulate the expression of the CFTR and associated proteins have been investigated as potential therapeutic targets. Here we show that miR-101-3p, targeting the 3'-UTR sequence of the CFTR mRNA, can be selectively inhibited by a peptide nucleic acid (PNA) carrying a full complementary sequence. With respect to clinical relevance of microRNA targeting, it is expected that reduction in concentration of miRNAs (the anti-miRNA approach) could be associated with increasing amounts of target mRNAs. Consistently to this hypothesis, we report that PNA-mediated inhibition of miR-101-3p was accompanied by CFTR up-regulation. Next Generation Sequencing (NGS) was performed in order to verify the effects of the anti-miR-101-3p PNA on the Calu-3 miRNome. Upon inhibition of miR-101-3p we observed a fold change (FC) expression <2 of the majority of miRNAs (403/479, 84.13%), whereas we identified a list of dysregulated miRNAs, suggesting that specific miRNA inhibition (in our case miR-101-3p) might be accompanied by alteration of expression of other miRNAs, some of them known to be involved in Cystic Fibrosis (CF), such as miR-155-5p and miR-125b-5p.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/efectos de los fármacos , MicroARNs/genética , Ácidos Nucleicos de Péptidos/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regiones no Traducidas 3'/efectos de los fármacos , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos
16.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375595

RESUMEN

The number of applications of peptide nucleic acids (PNAs)-oligonucleotide analogs with a polyamide backbone-is continuously increasing in both in vitro and cellular systems and, parallel to this, delivery systems able to bring PNAs to their targets have been developed. This review is intended to give to the readers an overview on the available carriers for these oligonucleotide mimics, with a particular emphasis on newly developed multi-component- and multifunctional vehicles which boosted PNA research in recent years. The following approaches will be discussed: (a) conjugation with carrier molecules and peptides; (b) liposome formulations; (c) polymer nanoparticles; (d) inorganic porous nanoparticles; (e) carbon based nanocarriers; and (f) self-assembled and supramolecular systems. New therapeutic strategies enabled by the combination of PNA and proper delivery systems are discussed.

17.
Biosens Bioelectron ; 170: 112648, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010708

RESUMEN

RAS mutations in the blood of colorectal cancer (CRC) patients are emerging as biomarkers of acquired resistance to Epidermal Growth Factor Receptor therapy. Unfortunately, reliable assays granting fast, real-time monitoring of treatment response, capable of refining retrospective, tissue-based analysis, are still needed. Recently, several methods for detecting blood RAS mutations have been proposed, generally relying on multi-step and PCR-based, time-consuming and cost-ineffective procedures. By exploiting a liquid biopsy approach, we developed an ultrasensitive nanoparticle-enhanced plasmonic method for detecting ~1 aM RAS single nucleotide variants (SNVs) in the plasma of CRC patients. The assay does not require the extraction of tumor DNA from plasma and detects it in volumes as low as 40 µL of plasma, which is at least an order of magnitude smaller than that required by state of the art liquid biopsy technologies. The most prevalent RAS mutations are detected in DNA from tumor tissue with 100% sensitivity and 83.33% specificity. Spike-in experiments in human plasma further encouraged assay application on clinical specimens. The assay was proven in plasma from CRC patients and healthy donors, and full discrimination between mutated DNA from patients over wild-type DNA from healthy volunteers was obtained thus demonstrating its promising avenue for cancer monitoring based on liquid biopsy.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos Libres de Células/aislamiento & purificación , Neoplasias Colorrectales , Proteínas ras/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , ADN de Neoplasias/genética , Humanos , Mutación , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos
18.
Molecules ; 25(7)2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32260566

RESUMEN

Peptide nucleic acids (PNAs) have been demonstrated to be very useful tools for gene regulation at different levels and with different mechanisms of action. In the last few years the use of PNAs for targeting microRNAs (anti-miRNA PNAs) has provided impressive advancements. In particular, targeting of microRNAs involved in the repression of the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is defective in cystic fibrosis (CF), is a key step in the development of new types of treatment protocols. In addition to the anti-miRNA therapeutic strategy, inhibition of miRNA functions can be reached by masking the miRNA binding sites present within the 3'UTR region of the target mRNAs. The objective of this study was to design a PNA masking the binding site of the microRNA miR-145-5p present within the 3'UTR of the CFTR mRNA and to determine its activity in inhibiting miR-145-5p function, with particular focus on the expression of both CFTR mRNA and CFTR protein in Calu-3 cells. The results obtained support the concept that the PNA masking the miR-145-5p binding site of the CFTR mRNA is able to interfere with miR-145-5p biological functions, leading to both an increase of CFTR mRNA and CFTR protein content.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , MicroARNs/metabolismo , Ácidos Nucleicos de Péptidos/metabolismo , Regiones no Traducidas 3'/genética , Sitios de Unión/genética , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , MicroARNs/genética
19.
Langmuir ; 36(16): 4272-4279, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32239946

RESUMEN

The available active surface area and the density of probes immobilized on this surface are responsible for achieving high specificity and sensitivity in electrochemical biosensors that detect biologically relevant molecules, including DNA. Here, we report the design of gold-coated, silicon micropillar-structured electrodes functionalized with modified poly-l-lysine (PLL) as an adhesion layer to concomitantly assess the increase in sensitivity with the increase of the electrochemical area and control over the probe density. By systematically reducing the center-to-center distance between the pillars (pitch), denser micropillar arrays were formed at the electrode, resulting in a larger sensing area. Azido-modified peptide nucleic acid (PNA) probes were click-reacted onto the electrode interface, exploiting PLL with appended oligo(ethylene glycol) (OEG) and dibenzocyclooctyne (DBCO) moieties (PLL-OEG-DBCO) for antifouling and probe binding properties, respectively. The selective electrochemical sandwich assay formation, composed of consecutive hybridization steps of the target complementary DNA (cDNA) and reporter DNA modified with the electroactive ferrocene functionality (rDNA-Fc), was monitored by quartz crystal microbalance. The DNA detection performance of micropillared electrodes with different pitches was evaluated by quantifying the cyclic voltammetric response of the surface-confined rDNA-Fc. By decrease of the pitch of the pillar array, the area of the electrode was enhanced by up to a factor 10.6. A comparison of the electrochemical data with the geometrical area of the pillared electrodes confirmed the validity of the increased sensitivity of the DNA detection by the design of the micropillar array.


Asunto(s)
ADN/análisis , Ácidos Nucleicos Inmovilizados/química , Ácidos Nucleicos de Péptidos/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , ADN/genética , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Oro/química , Ácidos Nucleicos Inmovilizados/genética , Hibridación de Ácido Nucleico , Ácidos Nucleicos de Péptidos/genética , Polilisina/química , Silicio/química
20.
Nucleic Acid Ther ; 30(3): 164-174, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32069125

RESUMEN

Sulforaphane (SFN) is one of most important dietary constituents of broccoli (Brassica oleracea) and other cruciferous vegetables, which have been reported to exhibit health benefits, including prevention and therapy of cancer, such as colorectal carcinoma (CRC). The objective of this study was to determine whether the anticancer effect of SFN on colon cancer HT-29 cell line could be improved by the combined treatment with molecules inhibiting microRNAs (miRNAs) involved in CRC. As miRNA inhibiting molecules we focused on peptide-nucleic acids (PNAs). As miRNA to be targeted, miR-15b-5p was selected on the basis of several information present in the literature and confirming that miR-15b-5p is overexpressed in colon cancer patients, and that its targeting decreases cell migration and metastasis in colorectal cancer. In this article, we described for the first time the efficacy of targeting miR-15b-5p by using a PNA against miR-15b-5p (R8-PNA-a15b), functionalized with an octoarginine peptide (R8) for maximizing cellular uptake. The miR-15b-5p downregulation in the colon cancer HT-29 cell line was associated with inhibition of in vitro cell growth and activation of the proapoptotic pathway, demonstrated by a sharp increase of late apoptotic cells in HT-29-treated cell populations. A second conclusion of this study is that the R8-PNA-a15b might be proposed in "combo-therapy" associated with SFN. To our knowledge, no report is available in the literature on a combination between SFN and miRNA-targeting molecules. Our data demonstrate that this combined treatment leads to a very high proportion of apoptotic HT-29 cells (over 85%), a value higher than the sum of the values of apoptotic cells obtained after singularly administered regents (either SFN or R8-PNA-a15b).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Isotiocianatos/farmacología , MicroARNs/genética , Ácidos Nucleicos de Péptidos/farmacología , Sulfóxidos/farmacología , Apoptosis/genética , Arginina/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Oligopéptidos/química , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/genética , Ácidos Nucleicos de Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...