Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 451, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200005

RESUMEN

Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.


Asunto(s)
Autofagia , Linfocitos T CD8-positivos , Humanos , Animales , Ratones , Dinoprostona , Genes Mitocondriales , Glutatión
3.
Nat Metab ; 5(11): 1931-1952, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813994

RESUMEN

Reversible acetylation of mitochondrial proteins is a regulatory mechanism central to adaptive metabolic responses. Yet, how such functionally relevant protein acetylation is achieved remains unexplored. Here we reveal an unprecedented role of the MYST family lysine acetyltransferase MOF in energy metabolism via mitochondrial protein acetylation. Loss of MOF-KANSL complex members leads to mitochondrial defects including fragmentation, reduced cristae density and impaired mitochondrial electron transport chain complex IV integrity in primary mouse embryonic fibroblasts. We demonstrate COX17, a complex IV assembly factor, as a bona fide acetylation target of MOF. Loss of COX17 or expression of its non-acetylatable mutant phenocopies the mitochondrial defects observed upon MOF depletion. The acetylation-mimetic COX17 rescues these defects and maintains complex IV activity even in the absence of MOF, suggesting an activatory role of mitochondrial electron transport chain protein acetylation. Fibroblasts from patients with MOF syndrome who have intellectual disability also revealed respiratory defects that could be restored by alternative oxidase, acetylation-mimetic COX17 or mitochondrially targeted MOF. Overall, our findings highlight the critical role of MOF-KANSL complex in mitochondrial physiology and provide new insights into MOF syndrome.


Asunto(s)
Fibroblastos , Mitocondrias , Humanos , Animales , Ratones , Acetilación , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Transportadoras de Cobre/metabolismo
4.
EBioMedicine ; 95: 104778, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37657135

RESUMEN

BACKGROUND: Dysregulated inflammatory responses and oxidative stress are key pathogenic drivers of chronic inflammatory diseases such as liver cirrhosis (LC). Regulatory T cells (Tregs) are essential to prevent excessive immune activation and maintain tissue homeostasis. While inflammatory cues are well known to modulate the function and stability of Tregs, the extent to which Tregs are influenced by oxidative stress has not been fully explored. METHODS: The phenotypic and functional properties of CD4+CD25+CD127lo/- Tregs isolated from patients with LC were compared to healthy controls (HC). Treg redox state was investigated by characterizing intracellular reactive oxygen species (ROS), NADPH oxidase-2 (Nox2) activity, mitochondrial function, morphology, and nuclear factor-erythroid 2-related factor (Nrf2) antioxidant signalling. The relevance of Nrf2 and its downstream target, Heme-oxygenase-1 (HO-1), in Treg function, stability, and survival, was further assessed using mouse models and CRISPR/Cas9-mediated HO-1 knock-out. FINDINGS: Circulating Tregs from LC patients displayed a reduced suppressive function, correlating with liver disease severity, associated with phenotypic abnormalities and increased apoptosis. Mechanistically, this was linked to a dysregulated Nrf2 signalling with resultant lower levels of HO-1, enhanced Nox2 activation, and impaired mitochondrial respiration and integrity. The functional deficit in LC Tregs could be partially recapitulated by culturing control Tregs in patient sera. INTERPRETATION: Our findings reveal that Tregs rely on functional redox homeostasis for their function, stability, and survival. Targeting Treg specific anti-oxidant pathways may have therapeutic potential to reverse the Treg impairment in conditions of oxidative damage such as advanced liver disease. FUNDING: This study was funded by the Wellcome Trust (211113/A/18/Z).


Asunto(s)
Antioxidantes , Hepatopatías , Animales , Ratones , Linfocitos T Reguladores , Factor 2 Relacionado con NF-E2 , Hepatopatías/etiología , Cirrosis Hepática
5.
Cell Chem Biol ; 30(9): 1012-1014, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37738953

RESUMEN

Metabolic competition within the tumor microenvironment (TME) shapes the efficacy of anticancer immunity. In the August 3rd issue of Nature, Guo et al.1 show that glutamine is an intercellular metabolic checkpoint between cancer and immune cells. Targeting glutamine metabolism in the TME is a promising strategy to improve anti-cancer therapy.


Asunto(s)
Glutamina , Microambiente Tumoral , Células Dendríticas
6.
Sci Immunol ; 8(86): eadg0878, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37624910

RESUMEN

During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.


Asunto(s)
Antígenos CD28 , Factor 1 de Transcripción de Linfocitos T , Factor 1 de Transcripción de Linfocitos T/genética , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos , Diferenciación Celular , Factores de Transcripción
7.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993703

RESUMEN

Immune cells must adapt to different environments during the course of an immune response. We studied the adaptation of CD8 + T cells to the intestinal microenvironment and how this process shapes their residency in the gut. CD8 + T cells progressively remodel their transcriptome and surface phenotype as they acquire gut residency, and downregulate expression of mitochondrial genes. Human and mouse gut-resident CD8 + T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We found that the intestinal microenvironment is rich in prostaglandin E 2 (PGE 2 ), which drives mitochondrial depolarization in CD8 + T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE 2 sensing promotes CD8 + T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell population. Thus, a PGE 2 -autophagy-glutathione axis defines the metabolic adaptation of CD8 + T cells to the intestinal microenvironment, to ultimately influence the T cell pool.

8.
Nat Immunol ; 24(3): 516-530, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732424

RESUMEN

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Asunto(s)
Fosfatos de Fosfatidilinositol , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Linfocitos T CD8-positivos/metabolismo
9.
Nature ; 610(7932): 555-561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171294

RESUMEN

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Mitocondrias , Células Th17 , Glutamina/metabolismo , Interleucina-17/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Serina/metabolismo , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo del Ácido Cítrico , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
10.
J Clin Invest ; 132(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981777

RESUMEN

Vaccination affords protection from disease by activating pathogen-specific immune cells and facilitating the development of persistent immunologic memory toward the vaccine-specific pathogen. Current vaccine regimens are often based on the efficiency of the acute immune response, and not necessarily on the generation of memory cells, in part because the mechanisms underlying the development of efficient immune memory remain incompletely understood. This Review describes recent advances in defining memory T cell metabolism and how metabolism of these cells might be altered in patients affected by mitochondrial diseases or metabolic syndrome, who show higher susceptibility to recurrent infections and higher rates of vaccine failure. It discusses how this new understanding could add to the way we think about immunologic memory, vaccine development, and cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Memoria Inmunológica , Células T de Memoria/metabolismo , Síndrome Metabólico/metabolismo , Enfermedades Mitocondriales/metabolismo , Neoplasias/metabolismo , Vacunación , Animales , Humanos , Células T de Memoria/inmunología , Síndrome Metabólico/inmunología , Síndrome Metabólico/terapia , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/terapia , Neoplasias/inmunología , Neoplasias/terapia
11.
J Invest Dermatol ; 141(12): 2767-2774.e2, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34802549

RESUMEN

The analysis of cellular metabolism is attracting increasing interest. Glycolysis and oxidative phosphorylation are intertwined with one another and dozens of other pathways to ultimately produce energy and maintain cellular fitness. However, cellular metabolism is much more than this. Metabolism underlies the proliferation, differentiation, and function of cells as well as the coordination of intercellular communication. Investigating metabolism allows the interpretation of cellular behavior in health and disease. In this article, we aim to demystify the complexity of cellular metabolism and explain the common approaches to study it. Whereas the analysis of cellular metabolism by western blot or flow cytometry might be accessible to most investigators, the functional and comprehensive analyses obtained with a Seahorse Analyzer or mass spectrometer come with monetary and logistical hurdles. We believe that the application of these techniques, together with collaborative efforts between scientists and clinicians, will uncover disease mechanisms and open novel therapeutic avenues for unmet clinical needs in the field of dermatology.


Asunto(s)
Metabolismo Energético , Mitocondrias/metabolismo , Proyectos de Investigación , Animales , Citometría de Flujo , Humanos , Fosforilación Oxidativa
12.
Materials (Basel) ; 14(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34772216

RESUMEN

Interfacial debonding in fiber-reinforced composites is a common problem, especially in external strengthening techniques. This investigation aims to determine the load during debonding, and discusses two practical design parameters for direct shear tests, which are commonly used to assess the mechanics of debonding. In this study, three different bond-slip cohesive laws and one finite fracture mechanics approach are considered to investigate debonding in direct shear tests by taking the effect of residual strength into account. For each model, load during debonding and its maximum value are given by closed-form expressions, which are then checked against experimental data reported in the literature. It is shown that using the interfacial mechanical properties extracted from one geometry, the debonding load of tests with different bond lengths and widths can be predicted without any fitting procedure. Moreover, effective bond length formulae are suggested for each model; one is the straightforward extension (accounting for residual strength) of a formula available in the Standards. The results illustrate the importance of considering residual strength in direct shear tests, even at debonding onset, with its effect being nonetheless higher for long bond lengths.

13.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216540

RESUMEN

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Asunto(s)
Linaje de la Célula , Poliaminas/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Colitis/inmunología , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Epigenoma , Histonas/metabolismo , Inflamación/inmunología , Inflamación/patología , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ornitina Descarboxilasa/metabolismo , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Células Th17/efectos de los fármacos , Células Th17/inmunología , Factores de Transcripción/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161266

RESUMEN

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Fiebre/inmunología , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Animales , Antineoplásicos/metabolismo , Linfocitos T CD8-positivos/ultraestructura , Citocinas/biosíntesis , Glucosa/metabolismo , Leucemia Mieloide/inmunología , Leucemia Mieloide/patología , Leucemia Mieloide/prevención & control , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/ultraestructura , Modelos Biológicos , Temperatura
15.
Redox Biol ; 41: 101944, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33780775

RESUMEN

Reactive oxygen species (ROS) are a common product of active mitochondrial respiration carried in mitochondrial cristae, but whether cristae shape influences ROS levels is unclear. Here we report that the mitochondrial fusion and cristae shape protein Opa1 requires mitochondrial ATP synthase oligomers to reduce ROS accumulation. In cells fueled with galactose to force ATP production by mitochondria, cristae are enlarged, ATP synthase oligomers destabilized, and ROS accumulate. Opa1 prevents both cristae remodeling and ROS generation, without impinging on levels of mitochondrial antioxidant defense enzymes that are unaffected by Opa1 overexpression. Genetic and pharmacologic experiments indicate that Opa1 requires ATP synthase oligomerization and activity to reduce ROS levels upon a blockage of the electron transport chain. Our results indicate that the converging effect of Opa1 and mitochondrial ATP synthase on mitochondrial ultrastructure regulate ROS abundance to sustain cell viability.


Asunto(s)
GTP Fosfohidrolasas , Membranas Mitocondriales , Adenosina Trifosfato/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
Cell Death Differ ; 28(7): 2194-2206, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33649469

RESUMEN

Optic atrophy 1 (OPA1), a mitochondria-shaping protein controlling cristae biogenesis and respiration, is required for memory T cell function, but whether it affects intrathymic T cell development is unknown. Here we show that OPA1 is necessary for thymocyte maturation at the double negative (DN)3 stage when rearrangement of the T cell receptor ß (Tcrß) locus occurs. By profiling mitochondrial function at different stages of thymocyte maturation, we find that DN3 cells rely on oxidative phosphorylation. Consistently, Opa1 deletion during early T cell development impairs respiration of DN3 cells and reduces their number. Opa1-deficient DN3 cells indeed display stronger TCR signaling and are more prone to cell death. The surviving Opa1-/- thymocytes that reach the periphery as mature T cells display an effector memory phenotype even in the absence of antigenic stimulation but are unable to generate metabolically fit long-term memory T cells. Thus, mitochondrial defects early during T cell development affect mature T cell function.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Células T de Memoria/metabolismo , Mitocondrias/metabolismo , Animales , Diferenciación Celular , GTP Fosfohidrolasas/genética , Células T de Memoria/citología , Ratones , Ratones Noqueados , Fosforilación Oxidativa , Transducción de Señal , Timo/citología , Timo/metabolismo
17.
Cell Metab ; 32(6): 981-995.e7, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264603

RESUMEN

Mitochondria constantly adapt to the metabolic needs of a cell. This mitochondrial plasticity is critical to T cells, which modulate metabolism depending on antigen-driven signals and environment. We show here that de novo synthesis of the mitochondrial membrane-specific lipid cardiolipin maintains CD8+ T cell function. T cells deficient for the cardiolipin-synthesizing enzyme PTPMT1 had reduced cardiolipin and responded poorly to antigen because basal cardiolipin levels were required for activation. However, neither de novo cardiolipin synthesis, nor its Tafazzin-dependent remodeling, was needed for T cell activation. In contrast, PTPMT1-dependent cardiolipin synthesis was vital when mitochondrial fitness was required, most notably during memory T cell differentiation or nutrient stress. We also found CD8+ T cell defects in a small cohort of patients with Barth syndrome, where TAFAZZIN is mutated, and in a Tafazzin-deficient mouse model. Thus, the dynamic regulation of a single mitochondrial lipid is crucial for CD8+ T cell immunity.


Asunto(s)
Aciltransferasas/inmunología , Síndrome de Barth/inmunología , Linfocitos T CD8-positivos/inmunología , Cardiolipinas/inmunología , Mitocondrias/inmunología , Fosfohidrolasa PTEN/inmunología , Animales , Síndrome de Barth/patología , Linfocitos T CD8-positivos/citología , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
18.
Sci Rep ; 10(1): 21626, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318509

RESUMEN

MZB1 is an endoplasmic reticulum (ER)-resident protein that plays an important role in the humoral immune response by enhancing the interaction of the µ immunoglobulin (Ig) heavy chain with the chaperone GRP94 and by augmenting the secretion of IgM. Here, we show that MZB1 is also expressed in plasmacytoid dendritic cells (pDCs). Mzb1-/- pDCs have a defect in the secretion of interferon (IFN) α upon Toll-like receptor (TLR) 9 stimulation and a reduced ability to enhance B cell differentiation towards plasma cells. Mzb1-/- pDCs do not properly expand the ER upon TLR9 stimulation, which may be accounted for by an impaired activation of ATF6, a regulator of the unfolded protein response (UPR). Pharmacological inhibition of ATF6 cleavage in stimulated wild type pDCs mimics the diminished IFNα secretion by Mzb1-/- pDCs. Thus, MZB1 enables pDCs to secrete high amounts of IFNα by mitigating ER stress via the ATF6-mediated UPR.


Asunto(s)
Células Dendríticas/metabolismo , Interferón-alfa/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Línea Celular , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Inmunidad Humoral , Cadenas mu de Inmunoglobulina/inmunología , Cadenas mu de Inmunoglobulina/metabolismo , Interferón-alfa/inmunología , Ratones , Chaperonas Moleculares/inmunología , Cultivo Primario de Células , Transducción de Señal
19.
Nat Commun ; 11(1): 4107, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796836

RESUMEN

Foamy macrophages, which have prominent lipid droplets (LDs), are found in a variety of disease states. Toll-like receptor agonists drive triacylglycerol (TG)-rich LD development in macrophages. Here we explore the basis and significance of this process. Our findings indicate that LD development is the result of metabolic commitment to TG synthesis on a background of decreased fatty acid oxidation. TG synthesis is essential for optimal inflammatory macrophage activation as its inhibition, which prevents LD development, has marked effects on the production of inflammatory mediators, including IL-1ß, IL-6 and PGE2, and on phagocytic capacity. The failure of inflammatory macrophages to make PGE2 when TG-synthesis is inhibited is critical for this phenotype, as addition of exogenous PGE2 is able to reverse the anti-inflammatory effects of TG synthesis inhibition. These findings place LDs in a position of central importance in inflammatory macrophage activation.


Asunto(s)
Inflamación/metabolismo , Lipidómica/métodos , Triglicéridos/metabolismo , Animales , Células Cultivadas , Citometría de Flujo , Glucosa/metabolismo , Glicerol/metabolismo , Células HEK293 , Humanos , Metabolismo de los Lípidos/fisiología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica , Palmitatos/metabolismo , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...