Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895060

RESUMEN

Hydrolyzed collagen, glycogen, and hyaluronic acid, obtained through the biotechnological valorization of underutilized marine bioresources, fulfill cosmetic industry requirements for sustainable products produced under circular economy principles. Hydrolyzed collagen was obtained by hydrolyzing blue shark collagen with papain and ultrafiltration. Glycogen was isolated from industrial mussel cooking wastewaters through ultrafiltration, precipitation, and selective polysaccharide separation. Hyaluronic acid was produced by fermentation, purification, and depolymerization. The main objective was to test the feasibility of including these three biomolecules in a cosmetic formulation as bioactive compounds. For this, the in vitro irritant potential of the three ingredients and also that of the cosmetic formulation was assayed according to the Reconstituted Human Epithelium Test method OECD 439. Moreover, an in vitro assessment of the effect of hydrolyzed collagen and hyaluronic acid combinations on mRNA expression and collagen type I synthesis was evaluated in adult human fibroblasts. This study establishes, for the first time, the potential use of particular hydrolyzed collagen and hyaluronic acid combinations as stimulators of collagen I synthesis in fibroblast cultures. Besides, it provide safety information regarding potential use of those biomolecules in the formulation of a cosmetic preparation positively concluding that both, ingredients and cosmetic preparation, resulted not irritant for skin following an international validated reference method.


Asunto(s)
Cosméticos , Ácido Hialurónico , Humanos , Ácido Hialurónico/farmacología , Seguridad de Productos para el Consumidor , Piel/metabolismo , Cosméticos/farmacología , Colágeno/farmacología , Colágeno/metabolismo , Colágeno Tipo I , Glucógeno
2.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008452

RESUMEN

High molecular weight (Mw) collagen hydrolysates have been demonstrated to produce a higher synthesis of collagen type I mRNA. Mw determination is a key factor maximizing the effect of collagen hydrolysates on collagen type I synthesis by fibroblasts. This work aimed to achieve a high average Mw in Blue Shark Collagen Hydrolysate, studying different hydrolysis parameters by GPC-LS analysis and testing its effect on mRNA Type I collagen expression. Analysis revealed differences in blue shark collagen hydrolysates Mw depending on hydrolysis conditions. Papain leads to obtaining a significantly higher Mw hydrolysate than Alcalase at different times of hydrolysis and at different enzyme/substrate ratios. Besides, the time of the hydrolysis factor is more determinant than the enzyme/substrate ratio factor for obtaining a higher or lower hydrolysate Mw when using Papain as the enzyme. Contrary, Alcalase hydrolysates resulted in similar Mw with no significant differences between different conditions of hydrolysis assayed. Blue shark collagen hydrolysate showing the highest Mw showed neither cytotoxic nor proliferation effect on fibroblast cell culture. Besides, it exhibited an increasing effect on both mRNA expression and pro-collagen I production.


Asunto(s)
Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , ARN Mensajero/metabolismo , Tiburones/metabolismo , Animales , Dispersión Dinámica de Luz/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Hidrólisis , Peso Molecular , Papaína/metabolismo , Subtilisinas/metabolismo
3.
Mar Drugs ; 16(5)2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29701725

RESUMEN

Fish discards and subproducts may represent an important source of raw material, not only for the food industry, but for other different kind of industries, such as the nutraceutical and cosmetic industries. Collagen, which is mainly obtained from animal skins, is an important structural protein in the animal kingdom having many different applications. It is well known that fish skins constitute a significant subproduct in the fishery industry, especially in the case of some species, where fish skins may represent up to 20% of the total body weight of fish. Peptides from collagen hydrolysates have been described to be useful for preventing skin aging and osteoarthritis, however, the mechanism for these biological activities is not well known. Fibroblasts are the main cell types involved in the collagen synthesis, and in the present work, human dermal fibroblasts have been exposed to the treatment of collagen peptides of two different molecular weight ranges. Results show that higher molecular weight collagen peptides produce higher synthesis of collagen type I mRNA and, therefore, it may suggest that prior molecular weight selection may be an important step to maximize the effect of collagen hydrolysates on collagen type I synthesis by dermal fibroblasts.


Asunto(s)
Colágeno Tipo I/metabolismo , Colágeno/química , Colágeno/farmacología , Peces , Animales , Células Cultivadas , Colágeno Tipo I/genética , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrólisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Piel/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...