Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Histochem Cell Biol ; 162(1-2): 161-183, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38758429

RESUMEN

The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the substructural mechanistic principles of the nucleolar function in preribosome biogenesis have only recently begun to emerge. Here, we provide a new perspective using advanced super-resolution microscopy and single-molecule MINFLUX nanoscopy on the mechanistic principles governing ribosomal RNA-seeded nucleolar formation and the resulting tripartite suborganization of the nucleolus driven, in part, by liquid-liquid phase separation. With recent advances in the cryogenic electron microscopy (cryoEM) structural analysis of ribosome biogenesis intermediates, we highlight the current understanding of the step-wise assembly of preribosomal subunits in the nucleolus. Finally, we address how novel anticancer drug candidates target early steps in ribosome biogenesis to exploit these essential dependencies for growth arrest and tumor control.


Asunto(s)
Nucléolo Celular , Animales , Humanos , Nucléolo Celular/metabolismo , Nucléolo Celular/química , Microscopía , Ribosomas/metabolismo , Ribosomas/química
2.
Methods Enzymol ; 673: 77-101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965019

RESUMEN

The RNA helicase Dhr1 from S. cerevisiae is an essential enzyme required for the assembly of the cytosolic small ribosomal subunit (SSU). A critical feature of the SSU is the central pseudoknot, an RNA fold that organizes the overall architecture of the subunit and connects all four domains of the 18S ribosomal RNA (rRNA). The initial folding of rRNA is guided, in part, by the U3 small nucleolar RNA, which base-pairs with the pre-rRNA in such a way as to preclude premature formation of the central pseudoknot. Thus, the essential role of Dhr1 is the unwinding of U3 from the pre-rRNA to allow folding of the central pseudoknot. Enzymes of the DEAH/RNA helicase A-like (RHA) family, to which Dhr1 belongs, are involved in splicing and ribosome biogenesis. They typically unwind RNA duplexes by translocation along a single strand of RNA in a 3' to 5' direction, driven by ATP hydrolysis. The substrate specificity of these enzymes requires tight regulation of their activity, by restricting access to their substrates, requiring adaptors to recruit them to their substrates and mechanisms of inhibiting and activating their activity. Purified Dhr1 is an active RNA-dependent ATPase with specific unwinding activity. Here, we provide detailed protocols for its purification and assays for its ATPase and unwinding activities.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , ARN Helicasas , Precursores del ARN/química , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
Cells ; 8(8)2019 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-31405125

RESUMEN

The nucleolus is the largest membrane-less structure in the eukaryotic nucleus. It is involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and is the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the intricate pathophysiological relationship between the nucleolus and protein synthesis has only recently begun to emerge. Here, we provide perspective on new principles governing nucleolar formation and the resulting multiphase organization driven by liquid-liquid phase separation. With recent advances in the structural analysis of ribosome formation, we highlight the current understanding of the step-wise assembly of pre-ribosomal subunits and the quality control required for proper function. Finally, we address how aging affects ribosome genesis and how genetic defects in ribosome formation cause ribosomopathies, complex diseases with a predisposition to cancer.


Asunto(s)
Envejecimiento/metabolismo , Nucléolo Celular/metabolismo , ADN Ribosómico/metabolismo , Células Eucariotas/metabolismo , Neoplasias/metabolismo , Ribosomas/metabolismo , Envejecimiento/genética , Ciclo Celular , Línea Celular Tumoral , Nucléolo Celular/genética , ADN Ribosómico/genética , Células Eucariotas/citología , Células Eucariotas/patología , Humanos , Mutación , Neoplasias/genética , Biosíntesis de Proteínas , Ribosomas/genética
5.
Mol Cell Biol ; 36(6): 965-78, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26729466

RESUMEN

In eukaryotic ribosome biogenesis, U3 snoRNA base pairs with the pre-rRNA to promote its processing. However, U3 must be removed to allow folding of the central pseudoknot, a key feature of the small subunit. Previously, we showed that the DEAH/RHA RNA helicase Dhr1 dislodges U3 from the pre-rRNA. DHR1 can be linked to UTP14, encoding an essential protein of the preribosome, through genetic interactions with the rRNA methyltransferase Bud23. Here, we report that Utp14 regulates Dhr1. Mutations within a discrete region of Utp14 reduced interaction with Dhr1 that correlated with reduced function of Utp14. These mutants accumulated Dhr1 and U3 in a pre-40S particle, mimicking a helicase-inactive Dhr1 mutant. This similarity in the phenotypes led us to propose that Utp14 activates Dhr1. Indeed, Utp14 formed a complex with Dhr1 and stimulated its unwinding activity in vitro. Moreover, the utp14 mutants that mimicked a catalytically inactive dhr1 mutant in vivo showed reduced stimulation of unwinding activity in vitro. Dhr1 binding to the preribosome was substantially reduced only when both Utp14 and Bud23 were depleted. Thus, Utp14 is bifunctional; together with Bud23, it is needed for stable interaction of Dhr1 with the preribosome, and Utp14 activates Dhr1 to dislodge U3.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Mapas de Interacción de Proteínas , ARN Nucleolar Pequeño/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , ARN Helicasas DEAD-box/genética , Eliminación de Gen , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , ARN Nucleolar Pequeño/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
6.
PLoS Biol ; 13(2): e1002083, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25710520

RESUMEN

In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Regulación Fúngica de la Expresión Génica , Precursores del ARN/metabolismo , ARN Nucleolar Pequeño/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Emparejamiento Base , Secuencia de Bases , Frío , ARN Helicasas DEAD-box/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Mutación Puntual , Biosíntesis de Proteínas , Precursores del ARN/química , Precursores del ARN/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
RNA ; 19(10): 1372-83, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23980203

RESUMEN

Eukaryotic ribosome biogenesis requires rapid hybridization between the U3 snoRNA and the pre-rRNA to direct cleavages at the A0, A1, and A2 sites in pre-rRNA that liberate the small subunit precursor. The bases involved in hybridization of one of the three duplexes that U3 makes with pre-rRNA, designated the U3-18S duplex, are buried in conserved structures: box A/A' stem-loop in U3 snoRNA and helix 1 (H1) in the 18S region of the pre-rRNA. These conserved structures must be unfolded to permit the necessary hybridization. Previously, we reported that Imp3 and Imp4 promote U3-18S hybridization in vitro, but the mechanism by which these proteins facilitate U3-18S duplex formation remained unclear. Here, we directly addressed this question by probing base accessibility with chemical modification and backbone accessibility with ribonuclease activity of U3 and pre-rRNA fragments that mimic the secondary structure observed in vivo. Our results demonstrate that U3-18S hybridization requires only Imp3. Binding to each RNA by Imp3 provides sufficient energy to unfold both the 18S H1 and the U3 box A/A' stem structures. The Imp3 unfolding activity also increases accessibility at the U3-dependent A0 and A1 sites, perhaps signaling cleavage at these sites to generate the 5' mature end of 18S. Imp4 destabilizes the U3-18S duplex to aid U3 release, thus differentiating the roles of these proteins. Protein-dependent unfolding of these structures may serve as a switch to block U3-pre-rRNA interactions until recruitment of Imp3, thereby preventing premature and inaccurate U3-dependent pre-rRNA cleavage and folding events in eukaryotic ribosome biogenesis.


Asunto(s)
Conformación de Ácido Nucleico , Precursores del ARN/metabolismo , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Hibridación de Ácido Nucleico , Precursores del ARN/química , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
Biochemistry ; 50(14): 3004-13, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21417210

RESUMEN

Restrictocin and related fungal endoribonucleases from the α-sarcin family site-specifically cleave the sarcin/ricin loop (SRL) on the ribosome to inhibit translation and ultimately trigger cell death. Previous studies showed that the SRL folds into a bulged-G motif and tetraloop, with restrictocin achieving a specificity of ∼1000-fold by recognizing both motifs only after the initial binding step. Here, we identify contacts within the protein-RNA interface and determine the extent to which each one contributes to enzyme specificity by examining the effect of protein mutations on the cleavage of the SRL substrate compared to a variety of other RNA substrates. As with other biomolecular interfaces, only a subset of contacts contributes to specificity. One contact of this subset is critical, with the H49A mutation resulting in quantitative loss of specificity. Maximum catalytic activity occurs when both motifs of the SRL are present, with the major contribution involving the bulged-G motif recognized by three lysine residues located adjacent to the active site: K110, K111, and K113. Our findings support a kinetic proofreading mechanism in which the active site residues H49 and, to a lesser extent, Y47 make greater catalytic contributions to SRL cleavage than to suboptimal substrates. This systematic and quantitative analysis begins to elucidate the principles governing RNA recognition by a site-specific endonuclease and may thus serve as a mechanistic model for investigating other RNA modifying enzymes.


Asunto(s)
Dominio Catalítico , Proteínas Fúngicas/química , ARN/química , Ribonucleasas/química , Algoritmos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , Biocatálisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cinética , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN/genética , ARN/metabolismo , Ratas , Ribonucleasas/genética , Ribonucleasas/metabolismo , Especificidad por Sustrato
9.
J Mol Biol ; 390(5): 991-1006, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19482034

RESUMEN

Short duplexes between the U3 small nucleolar RNA and the precursor ribosomal RNA must form quickly and with high yield to satisfy the high demand for ribosome synthesis in rapidly growing eukaryotic cells. These interactions, designated the U3-ETS (external transcribed spacer) and U3-18S duplexes, are essential to initiate the processing of small subunit ribosomal RNA. Previously, we showed that duplexes corresponding to those in Saccharomyces cerevisiae are only observed in vitro after addition of one of two proteins: Imp3p or Imp4p. Here, we used fluorescence-based and other in vitro assays to determine whether these proteins possess RNA chaperone activities and to assess whether these activities are sufficient to satisfy the duplex yield and rate requirements expected in vivo. Assembly of both proteins with the U3 small nucleolar RNA into a chaperone complex destabilizes a U3 stem structure, apparently to expose its 18S base-pairing site. As a result, the chaperone complex accelerates formation of the U3-18S duplex from an undetectable rate to one comparable with the intrinsic rate observed for hybridizing short duplexes. The chaperone complex also stabilizes the U3-ETS duplex by 2.7 kcal/mol. These chaperone activities provide high U3-ETS duplex yield and rapid U3-18S duplex formation over a broad concentration range to help ensure that the U3-precursor ribosomal RNA interactions limit neither ribosome biogenesis nor rapid cell growth. The thermodynamic and kinetic framework used is general and thus suitable for investigating the mechanism of action of other RNA chaperones.


Asunto(s)
Células Eucariotas/metabolismo , Chaperonas Moleculares/metabolismo , Conformación de Ácido Nucleico , Precursores del ARN/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Bioensayo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Hibridación de Ácido Nucleico , Precursores del ARN/química , Estabilidad del ARN , ARN Nucleolar Pequeño/química , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica
10.
Biochemistry ; 47(34): 8912-8, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18672906

RESUMEN

Restrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme-substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [partial differential log(k 2/ K 1/2)/ partial differential log[KCl]] of cleavage of the minimal SRL substrate for eight point mutants within the protein designed to disrupt contacts in the crystallographically defined interface. Relative to the wild-type salt dependence of -4.1, a subset of the mutants clustering near the active site shows significant changes in salt dependence, with differences of magnitude being >or=0.4. This same subset was identified using calculated salt dependencies for each mutant derived from solutions to the nonlinear Poisson-Boltzmann equation. Our findings support a mechanism in which specific residues on the active site face of restrictocin (primarily K110, K111, and K113) contribute to formation of the E:S complex, thereby positioning the SRL substrate for site-specific cleavage. The same restrictocin residues are expected to facilitate targeting of the SRL on the surface of the ribosome.


Asunto(s)
Aspergillus/enzimología , Proteínas Fúngicas/química , ARN/química , Ribonucleasas/química , Aspergillus/genética , Sitios de Unión/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Electricidad Estática , Especificidad por Sustrato
11.
Biochemistry ; 46(44): 12744-56, 2007 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-17929942

RESUMEN

Restrictocin is a site-specific endoribonuclease that inactivates ribosomes by cleaving the sarcin/ricin loop (SRL) of 23S-28S rRNA. Here we present a kinetic and thermodynamic analysis of the SRL cleavage reaction based on monitoring the cleavage of RNA oligonucleotides (2-27-mers). Restrictocin binds to a 27-mer SRL model substrate (designated wild-type SRL) via electrostatic interactions to form a nonspecific ground state complex E:S. At pH 6.7, physical steps govern the reaction rate: the wild-type substrate reacts at a partially diffusion-limited rate, and a faster-reacting SRL, containing a 3'-sulfur atom at the scissile phosphate, reacts at a fully diffusion-limited rate (k2/K1/2 = 1.1 x 10(9) M-1 s-1). At pH 7.4, the chemical step apparently limits the SRL cleavage rate. After the nonspecific binding step, restrictocin recognizes the SRL structure, which imparts 4.3 kcal/mol transition state stabilization relative to a single-stranded RNA. The two conserved SRL modules, bulged-G motif and GAGA tetraloop, contribute at least 2.4 and 1.9 kcal/mol, respectively, to the recognition. These findings suggest a model of SRL recognition in which restrictocin contacts the GAGA tetraloop and the bulged guanosine of the bulged-G motif to progress from the nonspecific ground state complex (E:S) to the higher-energy-specific complex (E.S) en route to the chemical transition state. Comparison of restrictocin with other ribonucleases revealed that restrictocin exhibits a 10(3)-10(6)-fold smaller ribonuclease activity against single-stranded RNA than do the restrictocin homologues, non-structure-specific ribonucleases T1 and U2. Together, these findings show how structural features of the SRL substrate facilitate catalysis and provide a mechanism for distinguishing between cognate and noncognate RNA.


Asunto(s)
Endorribonucleasas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Secuencia de Bases , Sitios de Unión , Catálisis , Modelos Biológicos , Modelos Moleculares , Modelos Teóricos , Datos de Secuencia Molecular , Relación Estructura-Actividad , Especificidad por Sustrato
12.
RNA ; 13(9): 1391-6, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17626843

RESUMEN

Alpha-sarcin and ricin represent two structurally and mechanistically distinct families of site-specific enzymes that block translation by irreversibly modifying the sarcin/ricin loop (SRL) of 23S-28S rRNA. alpha-Sarcin family enzymes are designated as ribotoxins and act as endonucleases. Ricin family enzymes are designated as ribosome inactivating proteins (RIP) and act as N-glycosidases. Recently, we demonstrated that basic surface residues of the ribotoxin restrictocin promote rapid and specific ribosome targeting by this endonuclease. Here, we report that three RIP: ricin A, saporin, and gypsophilin depurinate the ribosome with strong salt sensitivity and achieve unusually fast kcat/Km approximately 10(9)-10(10) M(-1) s(-1), implying that RIP share with ribotoxins a common mechanism of electrostatically facilitated ribosome targeting. Bioinformatics analysis of RIP revealed that surface charge properties correlate with the presence of the transport chain in the RIP molecule, suggesting a second role for the surface charge in RIP transport. These findings put forward surface electrostatics as an important determinant of RIP activity.


Asunto(s)
Endorribonucleasas/química , Proteínas Fúngicas/química , Familia de Multigenes/fisiología , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/fisiología , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/metabolismo , Ricina/química , Ésteres del Ácido Sulfúrico/química , Triterpenos/química , Endorribonucleasas/fisiología , Proteínas Fúngicas/fisiología , N-Glicosil Hidrolasas/clasificación , Proteínas de Plantas/clasificación , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 1 , Ribosomas/química , Ricina/clasificación , Ricina/farmacología , Saporinas , Electricidad Estática , Ésteres del Ácido Sulfúrico/clasificación , Ésteres del Ácido Sulfúrico/farmacología , Propiedades de Superficie , Triterpenos/clasificación , Triterpenos/farmacología
13.
Nat Struct Mol Biol ; 13(5): 436-43, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16604082

RESUMEN

Alpha-sarcin ribotoxins comprise a unique family of ribonucleases that cripple the ribosome by catalyzing endoribonucleolytic cleavage of ribosomal RNA at a specific location in the sarcin/ricin loop (SRL). The SRL structure alone is cleaved site-specifically by the ribotoxin, but the ribosomal context enhances the reaction rate by several orders of magnitude. We show that, for the alpha-sarcin-like ribotoxin restrictocin, this catalytic advantage arises from favorable electrostatic interactions with the ribosome. Restrictocin binds at many sites on the ribosomal surface and under certain conditions cleaves the SRL with a second-order rate constant of 1.7 x 10(10) M(-1) s(-1), a value that matches the predicted frequency of random restrictocin-ribosome encounters. The results suggest a mechanism of target location whereby restrictocin encounters ribosomes randomly and diffuses within the ribosomal electrostatic field to the SRL. These studies show a role for electrostatics in protein-ribosome recognition.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Endorribonucleasas/genética , Proteínas Fúngicas/genética , Modelos Moleculares , Mutación/genética , Conformación de Ácido Nucleico , Conformación Proteica , Ratas , Electricidad Estática , Especificidad por Sustrato , Factores de Tiempo , Volumetría
14.
Proc Natl Acad Sci U S A ; 101(43): 15301-6, 2004 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-15489263

RESUMEN

In eukaryotes, formation of short duplexes between the U3 small nucleolar RNA (snoRNA) and the precursor rRNA (pre-rRNA) at multiple sites is a prerequisite for three endonucleolytic cleavages that initiate small subunit biogenesis by releasing the 18S rRNA precursor from the pre-rRNA. The most likely role of these RNA duplexes is to guide the U3 snoRNA and its associated proteins, designated the small subunit processome, to the target cleavage sites on the pre-rRNA. Studies by others in Saccharomyces cerevisiae have identified the proteins Mpp10p, Imp3p, and Imp4p as candidates to mediate U3-pre-rRNA interactions. We report here that Imp3p and Imp4p appear to stabilize an otherwise unstable duplex between the U3 snoRNA hinge region and complementary bases in the external transcribed spacer of the pre-rRNA. In addition, Imp4p, but not Imp3p, seems to rearrange the U3 box A stem structure to expose the site that base-pairs with the 5' end of the 18S rRNA, thereby mediating duplex formation at a second site. By mediating formation of both essential U3-pre-rRNA duplexes, Imp3p and Imp4p may help the small subunit processome to dock onto the pre-rRNA, an event indispensable for ribosome biogenesis and hence for cell growth.


Asunto(s)
Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Clonación Molecular , Mutación , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
J Mol Biol ; 337(2): 263-72, 2004 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-15003445

RESUMEN

During translocation peptidyl-tRNA moves from the A-site to the P-site and mRNA is displaced by three nucleotides in the 3' direction. This reaction is catalyzed by elongation factor-G (EF-G) and is associated with ribosome-dependent hydrolysis of GTP. The molecular basis of translocation is the most important unsolved problem with respect to ribosome function. A critical question, one that might provide a clue to the mechanism of translocation, is the precise identity of the contacts between EF-G and ribosome components. To make the identification, a covalent bond was formed, by ultraviolet irradiation, between EF-G and a sarcin/ricin domain (SRD) oligoribonucleotide containing 5-iodouridine. The cross-link was established, by mass spectroscopy and by Edman degradation, to be between a tryptophan at position 127 in the G domain in EF-G and either one of two 5-iodouridine nucleotides in the sequence UAG2655U in the SRD. G2655 is a critical identity element for the recognition of the factor's ribosomal binding site. The site of the cross-link provides the first direct evidence that the SRD is in close proximity to the EF-G catalytic center. The proximity suggests that the SRD RNA has a role in the activation of GTP hydrolysis that leads to a transition in the conformation of the factor and to its release from the ribosome.


Asunto(s)
Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Ricina/química , Ricina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Reactivos de Enlaces Cruzados , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/genética , Homología de Secuencia de Aminoácido , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Rayos Ultravioleta
16.
Nucleic Acids Res ; 31(23): 6806-18, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-14627814

RESUMEN

Bulged-G motifs are ubiquitous internal RNA loops that provide specific recognition sites for proteins and RNAs. To establish the common and distinctive features of the motif we determined the structures of three variants and compared them with related structures. The variants are 27-nt mimics of the sarcin/ricin loop (SRL) from Escherichia coli 23S ribosomal RNA that is an essential part of the binding site for elongation factors (EFs). The wild-type SRL has now been determined at 1.04 A resolution, supplementing data obtained before at 1.11 A and allowing the first calculation of coordinate error for an RNA motif. The other two structures, having a viable (C2658U*G2663A) or a lethal mutation (C2658G*G2663C), were determined at 1.75 and 2.25 A resolution, respectively. Comparisons reveal that bulged-G motifs have a common hydration and geometry, with flexible junctions at flanking structural elements. Six conserved nucleotides preserve the fold of the motif; the remaining seven to nine vary in sequence and alter contacts in both grooves. Differences between accessible functional groups of the lethal mutation and those of the viable mutation and wild-type SRL may account for the impaired elongation factor binding to ribosomes with the C2658G*G2663C mutation and may underlie the lethal phenotype.


Asunto(s)
Escherichia coli/genética , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Ribosómico 23S/química , Animales , Secuencia de Bases , Cristalización , Cristalografía por Rayos X , Genes Esenciales/genética , Genes Letales/genética , Modelos Moleculares , Mutación/genética , ARN Bacteriano/genética , ARN Ribosómico 23S/genética , Ratas
18.
RNA ; 9(3): 355-63, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12592009

RESUMEN

GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 A resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48 degrees. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature.


Asunto(s)
Conformación de Ácido Nucleico , ARN Ribosómico 23S/química , Cristalografía por Rayos X , Modelos Moleculares , Mutación , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA