Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37388275

RESUMEN

Analysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing. To exploit the potential of emerging data, and to provide the field with improved state-of-the-art germline sets, an intermediate approach is needed that will allow the rapid publication of consolidated sets derived from these emerging sources. These sets must use a consistent naming scheme and allow refinement and consolidation into genes as new information emerges. Name changes should be minimised, but, where changes occur, the naming history of a sequence must be traceable. Here we outline the current issues and opportunities for the curation of germline IG/TR genes and present a forward-looking data model for building out more robust germline sets that can dovetail with current established processes. We describe interoperability standards for germline sets, and an approach to transparency based on principles of findability, accessibility, interoperability, and reusability.

2.
Methods Mol Biol ; 2453: 447-476, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35622339

RESUMEN

High-throughput sequencing of adaptive immune receptor repertoires (AIRR, i.e., IG and TR ) has revolutionized the ability to study the adaptive immune response via large-scale experiments. Since 2009, AIRR sequencing (AIRR-seq) has been widely applied to survey the immune state of individuals (see "The AIRR Community Guide to Repertoire Analysis" chapter for details). One of the goals of the AIRR Community is to make the resulting AIRR-seq data FAIR (Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al. Sci Data 3:1-9, 2016), with a primary goal of making it easy for the research community to reuse AIRR-seq data (Breden et al. Front Immunol 8:1418, 2017; Scott and Breden. Curr Opin Syst Biol 24:71-77, 2020). The basis for this is the MiAIRR data standard (Rubelt et al. Nat Immunol 18:1274-1278, 2017). For long-term preservation, it is recommended that researchers store their sequence read data in an INSDC repository. At the same time, the AIRR Community has established the AIRR Data Commons (Christley et al. Front Big Data 3:22, 2020), a distributed set of AIRR-compliant repositories that store the critically important annotated AIRR-seq data based on the MiAIRR standard, making the data findable, interoperable, and, because the data are annotated, more valuable in its reuse. Here, we build on the other AIRR Community chapters and illustrate how these principles and standards can be incorporated into AIRR-seq data analysis workflows. We discuss the importance of careful curation of metadata to ensure reproducibility and facilitate data sharing and reuse, and we illustrate how data can be shared via the AIRR Data Commons.


Asunto(s)
Difusión de la Información , Proyectos de Investigación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Difusión de la Información/métodos , Reproducibilidad de los Resultados , Flujo de Trabajo
3.
Nat Mach Intell ; 3(11): 936-944, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37396030

RESUMEN

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

4.
Front Big Data ; 3: 22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33693395

RESUMEN

The Adaptive Immune Receptor Repertoire (AIRR) Community is a research-driven group that is establishing a clear set of community-accepted data and metadata standards; standards-based reference implementation tools; and policies and practices for infrastructure to support the deposit, curation, storage, and use of high-throughput sequencing data from B-cell and T-cell receptor repertoires (AIRR-seq data). The AIRR Data Commons is a distributed system of data repositories that utilizes a common data model, a common query language, and common interoperability formats for storage, query, and downloading of AIRR-seq data. Here is described the principal technical standards for the AIRR Data Commons consisting of the AIRR Data Model for repertoires and rearrangements, the AIRR Data Commons (ADC) API for programmatic query of data repositories, a reference implementation for ADC API services, and tools for querying and validating data repositories that support the ADC API. AIRR-seq data repositories can become part of the AIRR Data Commons by implementing the data model and API. The AIRR Data Commons allows AIRR-seq data to be reused for novel analyses and empowers researchers to discover new biological insights about the adaptive immune system.

5.
Front Immunol ; 9: 2206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323809

RESUMEN

Increased interest in the immune system's involvement in pathophysiological phenomena coupled with decreased DNA sequencing costs have led to an explosion of antibody and T cell receptor sequencing data collectively termed "adaptive immune receptor repertoire sequencing" (AIRR-seq or Rep-Seq). The AIRR Community has been actively working to standardize protocols, metadata, formats, APIs, and other guidelines to promote open and reproducible studies of the immune repertoire. In this paper, we describe the work of the AIRR Community's Data Representation Working Group to develop standardized data representations for storing and sharing annotated antibody and T cell receptor data. Our file format emphasizes ease-of-use, accessibility, scalability to large data sets, and a commitment to open and transparent science. It is composed of a tab-delimited format with a specific schema. Several popular repertoire analysis tools and data repositories already utilize this AIRR-seq data format. We hope that others will follow suit in the interest of promoting interoperable standards.


Asunto(s)
Anticuerpos/genética , Secuencia de Bases , Sistemas de Administración de Bases de Datos , Difusión de la Información/métodos , Receptores de Antígenos de Linfocitos T/genética , Inmunidad Adaptativa/genética , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Receptores Inmunológicos/genética , Proyectos de Investigación
6.
Immunol Rev ; 284(1): 24-41, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29944754

RESUMEN

Next-generation sequencing allows the characterization of the adaptive immune receptor repertoire (AIRR) in exquisite detail. These large-scale AIRR-seq data sets have rapidly become critical to vaccine development, understanding the immune response in autoimmune and infectious disease, and monitoring novel therapeutics against cancer. However, at present there is no easy way to compare these AIRR-seq data sets across studies and institutions. The ability to combine and compare information for different disease conditions will greatly enhance the value of AIRR-seq data for improving biomedical research and patient care. The iReceptor Data Integration Platform (gateway.ireceptor.org) provides one implementation of the AIRR Data Commons envisioned by the AIRR Community (airr-community.org), an initiative that is developing protocols to facilitate sharing and comparing AIRR-seq data. The iReceptor Scientific Gateway links distributed (federated) AIRR-seq repositories, allowing sequence searches or metadata queries across multiple studies at multiple institutions, returning sets of sequences fulfilling specific criteria. We present a review of the development of iReceptor, and how it fits in with the general trend toward sharing genomic and health data, and the development of standards for describing and reporting AIRR-seq data. Researchers interested in integrating their repositories of AIRR-seq data into the iReceptor Platform are invited to contact support@ireceptor.org.


Asunto(s)
Anticuerpos/genética , Bases de Datos Genéticas , Difusión de la Información/métodos , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos T/genética , Anticuerpos/inmunología , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet
8.
BMC Bioinformatics ; 17(Suppl 13): 333, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27766961

RESUMEN

BACKGROUND: The genes that produce antibodies and the immune receptors expressed on lymphocytes are not germline encoded; rather, they are somatically generated in each developing lymphocyte by a process called V(D)J recombination, which assembles specific, independent gene segments into mature composite genes. The full set of composite genes in an individual at a single point in time is referred to as the immune repertoire. V(D)J recombination is the distinguishing feature of adaptive immunity and enables effective immune responses against an essentially infinite array of antigens. Characterization of immune repertoires is critical in both basic research and clinical contexts. Recent technological advances in repertoire profiling via high-throughput sequencing have resulted in an explosion of research activity in the field. This has been accompanied by a proliferation of software tools for analysis of repertoire sequencing data. Despite the widespread use of immune repertoire profiling and analysis software, there is currently no standardized format for output files from V(D)J analysis. Researchers utilize software such as IgBLAST and IMGT/High V-QUEST to perform V(D)J analysis and infer the structure of germline rearrangements. However, each of these software tools produces results in a different file format, and can annotate the same result using different labels. These differences make it challenging for users to perform additional downstream analyses. RESULTS: To help address this problem, we propose a standardized file format for representing V(D)J analysis results. The proposed format, VDJML, provides a common standardized format for different V(D)J analysis applications to facilitate downstream processing of the results in an application-agnostic manner. The VDJML file format specification is accompanied by a support library, written in C++ and Python, for reading and writing the VDJML file format. CONCLUSIONS: The VDJML suite will allow users to streamline their V(D)J analysis and facilitate the sharing of scientific knowledge within the community. The VDJML suite and documentation are available from https://vdjserver.org/vdjml/ . We welcome participation from the community in developing the file format standard, as well as code contributions.


Asunto(s)
Genómica/métodos , Receptores Inmunológicos/genética , Programas Informáticos , Recombinación V(D)J , Humanos , Difusión de la Información
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...