Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
2.
Photodiagnosis Photodyn Ther ; : 104078, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38588874

RESUMEN

Neuroimmunomodulation is the capacity of the nervous system to regulate immune processes. The existence of neurotransmitter receptors in immune cells enables this phenomenon to take place. Neuronal mediators possess the capacity to direct and control several occurrences during the wound healing process. Nitric oxide (NO) functions as a neuromodulator, playing a crucial role in the regulation of vascular tone and blood pressure with antimicrobial properties. Photodynamic therapy has been shown to augment the function of immune cells involved in the healing process of venous leg ulcers. Nitric oxide can be secreted into the extracellular environment by these cells. In lesions treated with PDT, the synthesis of iNOs (the enzyme that releases NO) increased, as demonstrated by the experimental results. Therefore the significance of PDT in enhancing the clinical condition of the lesion is thus highlighted.

4.
JCI Insight ; 9(5)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456506

RESUMEN

Dysostosis multiplex is a major cause of morbidity in Hurler syndrome (mucopolysaccharidosis type IH [MPS IH], OMIM #607014) because currently available therapies have limited success in its prevention and reversion. Unfortunately, the elucidation of skeletal pathogenesis in MPS IH is limited by difficulties in obtaining bone specimens from pediatric patients and poor reproducibility in animal models. Thus, the application of experimental systems that can be used to dissect cellular and molecular mechanisms underlying the skeletal phenotype of MPS IH patients and to identify effective therapies is highly needed. Here, we adopted in vitro/in vivo systems based on patient-derived bone marrow stromal cells to generate cartilaginous pellets and bone rudiments. Interestingly, we observed that heparan sulphate accumulation compromised the remodeling of MPS IH cartilage into other skeletal tissues and other critical aspects of the endochondral ossification process. We also noticed that MPS IH hypertrophic cartilage was characterized by dysregulation of signaling pathways controlling cartilage hypertrophy and fate, extracellular matrix organization, and glycosaminoglycan metabolism. Our study demonstrates that the cartilaginous pellet-based system is a valuable tool to study MPS IH dysostosis and to develop new therapeutic approaches for this hard-to-treat aspect of the disease. Finally, our approach may be applied for modeling other genetic skeletal disorders.


Asunto(s)
Disostosis , Mucopolisacaridosis I , Animales , Humanos , Niño , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/patología , Mucopolisacaridosis I/terapia , Iduronidasa/genética , Iduronidasa/metabolismo , Médula Ósea/patología , Reproducibilidad de los Resultados
5.
Bone ; 181: 117047, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331308

RESUMEN

Brain derived neurotrophic factor (BDNF) is a neurotrophin, expressed in the central nervous system and in peripheral tissues, that is regulated by the Gsα/cAMP pathway. In bone, it regulates osteogenesis and stimulates RANKL secretion and osteoclast formation in osteolytic tumors such as Multiple Myeloma. Fibrous dysplasia (FD) of bone is a rare genetic disease of the skeleton caused by gain-of-function mutations of the Gsα gene in which RANKL-dependent enhanced bone resorption is a major cause of bone fragility and clinical morbidity. We observed that BDNF transcripts are expressed in human FD lesions. Specifically, immunolocalization studies performed on biopsies obtained from FD patients revealed the expression of BDNF in osteoblasts and, to a lower extent, in the spindle-shaped cells within the fibrous tissue. Therefore, we hypothesized that BDNF can play a role in the pathogenesis of FD by stimulating RANKL secretion and bone resorption. To test this hypothesis, we used the EF1α-GsαR201C mouse model of the human disease (FD mice). Western blot analysis revealed a higher expression of BDNF in bone segments of FD mice compared to WT mice and the immunolabeling pattern within mouse FD lesions was similar to that observed in human FD. Treatment of FD mice with a monoclonal antibody against BDNF reduced the fibrous tissue along with the number of osteoclasts and osteoblasts within femoral lesions. These results reveal BDNF as a new player in the pathogenesis of FD and a potential molecular mechanism by which osteoclastogenesis may be nourished within FD bone lesions. They also suggest that BDNF inhibition may be a new approach to reduce abnormal bone remodeling in FD.


Asunto(s)
Resorción Ósea , Displasia Fibrosa Ósea , Humanos , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo , Huesos/metabolismo , Displasia Fibrosa Ósea/genética , Osteoclastos/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339060

RESUMEN

In intrahepatic cholangiocarcinoma (iCCA), thrombospondin 1 (THBS1) and 2 (THBS2) are soluble mediators released in the tumor microenvironment (TME) that contribute to the metastatic spreading of iCCA cells via a lymphatic network by the trans-differentiation of vascular endothelial cells to a lymphatic-like phenotype. To study the direct role of THBS1 and THBS2 on the iCCA cells, well-established epithelial (HuCCT-1) and mesenchymal (CCLP1) iCCA cell lines were subjected to recombinant human THBS1 and THBS2 (rhTHBS1, rhTHBS2) for cellular function assays. Cell growth, cell adhesion, migration, and invasion were all enhanced in both CCLP1 and HuCCT-1 cells by the treatment with either rhTHBS1 or rhTHBS2, although they showed some variability in their intensity of speeding up cellular processes. rhTHBS2 was more intense in inducing invasiveness and in committing the HuCCT-1 cells to a mesenchymal-like phenotype and was therefore a stronger enhancer of the malignant behavior of iCCA cells compared to rhTHBS1. Our data extend the role of THBS1 and THBS2, which are not only able to hinder the vascular network and promote tumor-associated lymphangiogenesis but also exacerbate the malignant behavior of the iCCA cells.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Proliferación Celular/genética , Colangiocarcinoma/metabolismo , Células Endoteliales/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Microambiente Tumoral , Trombospondinas
8.
Blood ; 143(14): 1399-1413, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38194688

RESUMEN

ABSTRACT: SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.


Asunto(s)
Sistema Hematopoyético , Enfermedades Mielodisplásicas-Mieloproliferativas , Trastornos Mieloproliferativos , Mielofibrosis Primaria , Animales , Ratones , Humanos , Mielofibrosis Primaria/genética , Trastornos Mieloproliferativos/genética , Mutación , Proteínas Portadoras/genética , Proteínas Nucleares/genética
9.
Oncol Lett ; 27(1): 37, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38108073

RESUMEN

Laryngeal cancer accounts for one-third of all head and neck tumors, with squamous cell carcinoma (SCC) being the most predominant type, followed by neuroendocrine tumors. Chromogranins, are commonly used as biomarkers for neuroendocrine tumors, including laryngeal cancer. It has been reported that secretogranin VGF, a member of the chromogranin family, can be also used as a significant biomarker for neuroendocrine tumors. However, the expression and role of VGF in laryngeal carcinomas have not been previously investigated. Therefore, the present study aimed to determine the expression levels of VGF in laryngeal SCC (LSCC). The present study collected tumor tissues, as well as serum samples, from a cohort of 15 patients with LSCC. The results of reverse transcription-quantitative PCR, western blot analysis and immunofluorescence assays showed that the selective VGF precursor was downregulated in patients with LSCC. Notably, in tumor tissue, the immunoreactivity for VGF was found in vimentin-positive cells, probably corresponding to T lymphocytes. The current preliminary study suggested that the reduced expression levels of VGF observed in tumor tissue and at the systemic level could sustain LSCC phenotype. Overall, VGF could be a potential biomarker for detecting neoplastic lesions with a higher risk of tumor invasiveness, even in non-neuroendocrine tumors.

10.
Front Immunol ; 14: 1320497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111584

RESUMEN

Introduction: Acute myeloid leukemia (AML) is a highly heterogeneous malignancy caused by various genetic alterations and characterized by the accumulation of immature myeloid blasts in the bone marrow (BM). This abnormal growth of AML cells disrupts normal hematopoiesis and alters the BM microenvironment components, establishing a niche supportive of leukemogenesis. Bone marrow stromal cells (BMSCs) play a pivotal role in giving rise to essential elements of the BM niche, including adipocytes and osteogenic cells. Animal models have shown that the BM microenvironment is significantly remodeled by AML cells, which skew BMSCs toward an ineffective osteogenic differentiation with an accumulation of osteoprogenitors. However, little is known about the mechanisms by which AML cells affect osteogenesis. Methods: We studied the effect of AML cells on the osteogenic commitment of normal BMSCs, using a 2D co-culture system. Results: We found that AML cell lines and primary blasts, but not normal hematopoietic CD34+ cells, induced in BMSCs an ineffective osteogenic commitment, with an increase of the early-osteogenic marker tissue non-specific alkaline phosphatase (TNAP) in the absence of the late-osteogenic gene up-regulation. Moreover, the direct interaction of AML cells and BMSCs was indispensable in influencing osteogenic differentiation. Mechanistic studies identified a role for AML-mediated Notch activation in BMSCs contributing to their ineffective osteogenic commitment. Inhibition of Notch using a γ-secretase inhibitor strongly influenced Notch signaling in BMSCs and abrogated the AML-induced TNAP up-regulation. Discussion: Together, our data support the hypothesis that AML infiltration produces a leukemia-supportive pre-osteoblast-rich niche in the BM, which can be partially ascribed to AML-induced activation of Notch signaling in BMSCs.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Animales , Osteogénesis , Células de la Médula Ósea/metabolismo , Leucemia Mieloide Aguda/patología , Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral
11.
Nutrients ; 15(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37960254

RESUMEN

This review focuses on providing physicians with insights into the complex relationship between bone marrow adipose tissue (BMAT) and bone health, in the context of weight loss through caloric restriction or metabolic and bariatric surgery (MBS), in people living with obesity (PwO). We summarize the complex relationship between BMAT and bone health, provide an overview of noninvasive imaging techniques to quantify human BMAT, and discuss clinical studies measuring BMAT in PwO before and after weight loss. The relationship between BMAT and bone is subject to variations based on factors such as age, sex, menopausal status, skeletal sites, nutritional status, and metabolic conditions. The Bone Marrow Adiposity Society (BMAS) recommends standardizing imaging protocols to increase comparability across studies and sites, they have identified both water-fat imaging (WFI) and spectroscopy (1H-MRS) as accepted standards for in vivo quantification of BMAT. Clinical studies measuring BMAT in PwO are limited and have shown contradictory results. However, BMAT tends to be higher in patients with the highest visceral adiposity, and inverse associations between BMAT and bone mineral density (BMD) have been consistently found in PwO. Furthermore, BMAT levels tend to decrease after caloric restriction-induced weight loss. Although weight loss was associated with overall fat loss, a reduction in BMAT did not always follow the changes in fat volume in other tissues. The effects of MBS on BMAT are not consistent among the studies, which is at least partly related to the differences in the study population, skeletal site, and duration of the follow-up. Overall, gastric bypass appears to decrease BMAT, particularly in patients with diabetes and postmenopausal women, whereas sleeve gastrectomy appears to increase BMAT. More research is necessary to evaluate changes in BMAT and its connection to bone metabolism, either in PwO or in cases of weight loss through caloric restriction or MBS, to better understand the role of BMAT in this context and determine the local or systemic factors involved.


Asunto(s)
Tejido Adiposo , Médula Ósea , Humanos , Femenino , Médula Ósea/metabolismo , Densidad Ósea , Obesidad/metabolismo , Pérdida de Peso
12.
Cancers (Basel) ; 15(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38001716

RESUMEN

BACKGROUND: The acinic cell carcinoma (AciCC) of the parotid gland is a rare tumor with an indolent behavior; however, a subgroup of this tumor presents an aggressive behavior with a tendency to recur. The aim of this multicenter study was to identify and stratify those patients with AciCC at high risk of tumor recurrence. METHODS: A retrospective study was carried out involving 77 patients treated with surgery between January 2000 and September 2022, in different Italian referral centers. Data about tumor characteristics and its recurrence were collected. The histological specimens and slides were independently reviewed by a senior pathologist coordinator (L.C.) and the institution's local head and neck pathologist. RESULTS: The patients' age average was 53.6 years, with a female prevalence in the group. The mean follow-up was 67.4 months (1-258, SD 59.39). The five-year overall survival (OS) was 83.2%. The 5-year disease-free survival (DFS) was 60% (95% CI 58.2-61.7). A high incidence of necrosis, extraglandular spread, lymphovascular invasion (LVI), atypical mitosis, and cellular pleomorphism was observed in the high-risk tumors compared to the low-risk ones. CONCLUSION: AciCC generally had an indolent behavior, optimal OS, DFS with few cervical node metastases, and rare distant relapses. This multicenter retrospective case series provides evidence of the need for clinical-epidemiological-histological stratification for patients at risk of poor outcomes. Our results suggest that the correct definition of high-risk AciCC should include tumor size, the presence of necrosis, extraglandular spread, LVI, atypical mitosis, and cellular pleomorphism.

13.
Arch Osteoporos ; 18(1): 94, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436671

RESUMEN

INTRODUCTION: Tumor-induced osteomalacia (TIO) is an uncommon paraneoplastic syndrome due to the overproduction of fibroblast growth factor 23 (FGF23). It is predominantly caused by mesenchymal tumors and cured upon their complete removal. Non-surgical treatment is an alternative option but limited to specific clinical conditions. METHODS: We report a challenging case of TIO caused by a tumor involving the occipital bone. We also performed a literature review of TIO caused by tumors localized at this site, focusing on clinical findings, treatment, and outcomes. RESULTS: The patient, a 62-year-old male, presented with a long-lasting history of progressive weakness. Biochemical evaluation revealed severe hypophosphatemia due to low renal tubular reabsorption of phosphate with raised intact FGF23 values. A 68 Ga-DOTATATE PET/TC imaging showed a suspicious lesion located in the left occipital bone that MRI and selective venous catheterization confirmed to be the cause of TIO. Stereotactic gamma knife radiosurgery was carried out, but unfortunately, the patient died of acute respiratory failure. To date, only seven additional cases of TIO have been associated to tumors located in the occipital bone. Furthermore, the tumor involved the left side of the occipital bone in all these patients. CONCLUSION: The occipital region is a difficult area to access so a multidisciplinary approach for their treatment is required. If anatomical differences could be the basis for the predilection of the left side of the occipital bone, it remains to be clarified.


Asunto(s)
Hipofosfatemia , Neoplasias de Tejido Conjuntivo , Osteomalacia , Síndromes Paraneoplásicos , Masculino , Humanos , Persona de Mediana Edad , Neoplasias de Tejido Conjuntivo/etiología , Neoplasias de Tejido Conjuntivo/complicaciones , Síndromes Paraneoplásicos/complicaciones , Síndromes Paraneoplásicos/cirugía , Osteomalacia/etiología , Osteomalacia/patología , Hipofosfatemia/etiología , Hipofosfatemia/patología , Hipofosfatemia/cirugía
14.
Curr Neuropharmacol ; 21(12): 2543-2549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37357518

RESUMEN

BACKGROUND: Variant transthyretin-mediated amyloidosis (ATTR-v) is a well-characterized disease affecting the neurologic and cardiovascular systems. Patisiran has been approved for neurologic involvement as it reduces hepatic synthesis of transthyretin (TTR). Eye involvement is a lateonset feature increasing the risk of glaucoma and cataracts in patients. AIMS: The aim of this case series was to assess whether patisiran can effectively reduce TTR synthesis in such a barrier-protected organ as the eye. METHODS: Two patisiran-treated ATTR-v patients underwent serum and aqueous humor sampling to measure TTR levels detected by SDS-PAGE and immunoblotting. Serum samples were compared to healthy control (HC), whereas aqueous humor samples were compared to non-amyloidotic subjects affected by cataracts and glaucoma. RESULTS: Serum TTR levels representative of hepatic synthesis were sharply lower in treated patients if compared to the HC (-87.5% and -93.75%, respectively). Aqueous humor TTR levels showed mild-tono reduction in treated patients compared to non-amyloidotic subjects with cataracts (-34.9% and +8.1%, respectively) and glaucoma (-41.1% and -2.1%). CONCLUSION: Patisiran does not seem to be as effective in inhibiting ocular TTR synthesis as it is in inhibiting hepatic synthesis. Re-engineering the envelope could allow the drug to target RPE cells thus avoiding any ocular involvement.


Asunto(s)
Catarata , Glaucoma , Humanos , Prealbúmina , Proyectos Piloto , Catarata/tratamiento farmacológico , Glaucoma/tratamiento farmacológico
15.
Front Cell Infect Microbiol ; 13: 1161669, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153157

RESUMEN

Introduction: Recent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of P. falciparum malaria by providing a "niche" for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized in vivo models to study the mechanisms of the interplay between the parasite and the human BM components are still missing. Methods: We report a novel experimental system based on the infusion of immature P. falciparum gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells. Results: We demonstrate that immature gametocytes home within minutes to the ossicles and reach the extravascular regions, where they are retained in contact with different human BM stromal cell types. Discussion: Our model represents a powerful tool to study BM function and the interplay essential for parasite transmission in P. falciparum malaria and can be extended to study other infections in which the human BM plays a role.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Humanos , Animales , Ratones , Plasmodium falciparum , Médula Ósea/parasitología , Malaria Falciparum/parasitología
19.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675308

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal epithelium in the oral cavity, pharynx, sino-nasal region, and larynx. Laryngeal squamous cell carcinoma (LSCC) represents one-third of all head and neck cancers. Dysregulated RNA-related pathways define an important molecular signature in this aggressive carcinoma. The Survival Motor Neuron (SMN) protein regulates fundamental aspects of the RNA metabolism but, curiously, its role in cancer is virtually unknown. For the first time, here, we focus on the SMN in the cancer context. We conducted a pilot study in a total of 20 patients with LSCC where the SMN was found overexpressed at both the protein and transcript levels. By a cellular model of human laryngeal carcinoma, we demonstrated that the SMN impacts cancer-relevant behaviors and perturbs key players of cell migration, invasion, and adhesion. Furthermore, in LSCC we showed a physical interaction between the SMN and the epidermal growth factor receptor (EGFR), whose overexpression is an important feature in these tumors. This study proposes the SMN protein as a novel therapeutic target in LSSC and likely in the whole spectrum of HNSCC. Overall, we provide the first analysis of the SMN in human cancer.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Laríngeas , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/patología , Proyectos Piloto , Neoplasias de Cabeza y Cuello/genética , Neoplasias Laríngeas/metabolismo , ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
20.
Curr Osteoporos Rep ; 21(1): 45-55, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534306

RESUMEN

PURPOSE OF REVIEW: This review focuses on the recent findings regarding bone marrow adipose tissue (BMAT) concerning bone health. We summarize the variations in BMAT in relation to age, sex, and skeletal sites, and provide an update on noninvasive imaging techniques to quantify human BMAT. Next, we discuss the role of BMAT in patients with osteoporosis and interventions that affect BMAT. RECENT FINDINGS: There are wide individual variations with region-specific fluctuation and age- and gender-specific differences in BMAT content and composition. The Bone Marrow Adiposity Society (BMAS) recommendations aim to standardize imaging protocols to increase comparability across studies and sites. Water-fat imaging (WFI) seems an accurate and efficient alternative for spectroscopy (1H-MRS). Most studies indicate that greater BMAT is associated with lower bone mineral density (BMD) and a higher prevalence of vertebral fractures. The proton density fat fraction (PDFF) and changes in lipid composition have been associated with an increased risk of fractures independently of BMD. Therefore, PDFF and lipid composition could potentially be future imaging biomarkers for assessing fracture risk. Evidence of the inhibitory effect of osteoporosis treatments on BMAT is still limited to a few randomized controlled trials. Moreover, results from the FRAME biopsy sub-study highlight contradictory findings on the effect of the sclerostin antibody romosozumab on BMAT. Further understanding of the role(s) of BMAT will provide insight into the pathogenesis of osteoporosis and may lead to targeted preventive and therapeutic strategies.


Asunto(s)
Médula Ósea , Osteoporosis , Humanos , Médula Ósea/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Osteoporosis/diagnóstico por imagen , Osteoporosis/patología , Densidad Ósea , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...