Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38592373

RESUMEN

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Asunto(s)
Adenocarcinoma , Reparación del ADN , Neoplasias Esofágicas , Oxaliplatino , Proteína smad3 , Animales , Humanos , Ratones , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Organoides/efectos de los fármacos , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Sci Adv ; 10(11): eadh4435, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489371

RESUMEN

Oncogenic mutations accumulating in many chromatin-associated proteins have been identified in different tumor types. With a mutation rate from 10 to 57%, ARID1A has been widely considered a tumor suppressor gene. However, whether this role is mainly due to its transcriptional-related activities or its ability to preserve genome integrity is still a matter of intense debate. Here, we show that ARID1A is largely dispensable for preserving enhancer-dependent transcriptional regulation, being ARID1B sufficient and required to compensate for ARID1A loss. We provide in vivo evidence that ARID1A is mainly required to preserve genomic integrity in adult tissues. ARID1A loss primarily results in DNA damage accumulation, interferon type I response activation, and chronic inflammation leading to tumor formation. Our data suggest that in healthy tissues, the increased genomic instability that follows ARID1A mutations and the selective pressure imposed by the microenvironment might result in the emergence of aggressive, possibly immune-resistant, tumors.


Asunto(s)
Neoplasias , Proteínas Nucleares , Humanos , Inestabilidad Genómica , Mutación , Tasa de Mutación , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Microambiente Tumoral , Animales , Ratones
3.
Gastric Cancer ; 27(3): 473-483, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38261067

RESUMEN

BACKGROUND: Gastric cancer (GC) is the third leading cause of cancer-related death worldwide, with a poor prognosis for patients with advanced disease. Since the oncogenic role of KRAS mutants has been poorly investigated in GC, this study aims to biochemically and biologically characterize different KRAS-mutated models and unravel differences among KRAS mutants in response to therapy. METHODS: Taking advantage of a proprietary, molecularly annotated platform of more than 200 GC PDXs (patient-derived xenografts), we identified KRAS-mutated PDXs, from which primary cell lines were established. The different mutants were challenged with KRAS downstream inhibitors in in vitro and in vivo experiments. RESULTS: Cells expressing the rare KRAS A146T mutant showed lower RAS-GTP levels compared to those bearing the canonical G12/13D mutations. Nevertheless, all the KRAS-mutated cells displayed KRAS addiction. Surprisingly, even if the GEF SOS1 is considered critical for the activation of KRAS A146T mutants, its abrogation did not significantly affect cell viability. From the pharmacologic point of view, Trametinib monotherapy was more effective in A146T than in G12D-mutated models, suggesting a vulnerability to MEK inhibition. However, in the presence of mutations in the PI3K pathway, more frequently co-occurrent in A146T models, the association of Trametinib and the AKT inhibitor MK-2206 was required to optimize the response. CONCLUSION: A deeper genomic and biological characterization of KRAS mutants might sustain the development of more efficient and long-lasting therapeutic options for patients harbouring KRAS-driven GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral
4.
Cancer Res ; 83(10): 1699-1710, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37129948

RESUMEN

Despite negative results of clinical trials conducted on the overall population of patients with gastric cancer, PARP inhibitor (PARPi) therapeutic strategy still might represent a window of opportunity for a subpopulation of patients with gastric cancer. An estimated 7% to 12% of gastric cancers exhibit a mutational signature associated with homologous recombination (HR) failure, suggesting that these patients could potentially benefit from PARPis. To analyze responsiveness of gastric cancer to PARPi, we exploited a gastroesophageal adenocarcinoma (GEA) platform of patient-derived xenografts (PDX) and PDX-derived primary cells and selected 10 PDXs with loss-of-function mutations in HR pathway genes. Cell viability assays and preclinical trials showed that olaparib treatment was effective in PDXs harboring BRCA2 germline mutations and somatic inactivation of the second allele. Olaparib responsive tumors were sensitive to oxaliplatin as well. Evaluation of HR deficiency (HRD) and mutational signatures efficiently stratified responder and nonresponder PDXs. A retrospective analysis on 57 patients with GEA showed that BRCA2 inactivating variants were associated with longer progression-free survival upon platinum-based regimens. Five of 7 patients with BRCA2 germline mutations carried the p.K3326* variant, classified as "benign." However, familial history of cancer, the absence of RAD51 foci in tumor cells, and a high HRD score suggest a deleterious effect of this mutation in gastric cancer. In conclusion, PARPis could represent an effective therapeutic option for BRCA2-mutated and/or high HRD score patients with GEA, including patients with familial intestinal gastric cancer. SIGNIFICANCE: PARP inhibition is a potential strategy for treating patients with gastric cancer with mutated BRCA2 or homologous repair deficiency, including patients with familial intestinal gastric cancer, for whom BRCA2 germline testing should be recommended.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Neoplasias Gástricas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Mutación de Línea Germinal , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Estudios Retrospectivos , Proteína BRCA1/genética , Proteína BRCA2/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico
5.
Cell Oncol (Dordr) ; 46(3): 661-676, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36753044

RESUMEN

PURPOSE: Trastuzumab is an HER2-specific agent approved as the gold-standard therapy for advanced HER2-positive (HER2+) gastric cancer (GC), but the high rate and rapid appearance of resistance limit its clinical efficacy, resulting in the need to identify new vulnerabilities. Defining the drivers influencing HER2+ cancer stem cell (CSC) maintenance/survival could represent a clinically useful strategy to counteract tumor growth and therapy resistance. Accumulating evidence show that targeting crucial metabolic hubs, as the fatty acid synthase (FASN), may be clinically relevant. METHODS: FASN protein and transcript expression were examined by WB and FACS and by qRT-PCR and GEP analyses, respectively, in trastuzumab-sensitive and trastuzumab-resistant HER2+ GC cell lines cultured in adherent (2D) or gastrosphere promoting (3D) conditions. Molecular data were analyzed in silico in public HER2+ GC datasets. The effectiveness of the FASN inhibitor TVB3166 to overcome anti-HER2 therapy resistance was tested in vitro in gastrospheres forming efficiency bioassays and in vivo in mice bearing trastuzumab-resistant GC cells. RESULTS: We compared the transcriptome profiles of HER2+ GC cells cultured in 2D versus 3D conditions finding a significant enrichment of FASN in 3D cultures. FASN upregulation significantly correlated with high stemness score and poor prognosis in HER2+ GC cases. TVB3166 treatment significantly decreased GCSCs in all cell targets. HER2 and FASN cotargeting significantly decreased the capability to form gastrospheres versus monotherapy and reduced the in vivo growth of trastuzumab-resistant GC cells. CONCLUSION: Our findings indicate that cotargeting HER2 and FASN increase the benefit of anti-HER2 therapy representing a new opportunity for metabolically combating trastuzumab-resistant HER2+ GC.


Asunto(s)
Receptor ErbB-2 , Neoplasias Gástricas , Animales , Ratones , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/patología , Trastuzumab/farmacología , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/uso terapéutico , Línea Celular Tumoral
6.
Clin Cancer Res ; 29(3): 571-580, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413222

RESUMEN

PURPOSE: In JACOB trial, pertuzumab added to trastuzumab-chemotherapy did not significantly improve survival of patients with HER2-positive metastatic gastric cancer, despite 3.3 months increase versus placebo. HER2 copy-number variation (CNV) and AMNESIA panel encompassing primary resistance alterations (KRAS/PIK3CA/MET mutations, KRAS/EGFR/MET amplifications) may improve patients' selection for HER2 inhibition. EXPERIMENTAL DESIGN: In a post hoc analysis of JACOB on 327 samples successfully sequenced by next-generation sequencing (NGS; Oncomine Focus DNA), HER2 CNV, HER2 expression by IHC, and AMNESIA were correlated with overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) by univariable/multivariable models. RESULTS: Median HER2 CNV was 4.7 (interquartile range, 2.2-16.9). HER2 CNV-high versus low using the median as cutoff was associated with longer median PFS (10.5 vs. 6.4 months; HR = 0.48; 95% confidence interval: 0.38-0.62; P < 0.001) and OS (20.3 vs. 13.0 months; HR = 0.54; 0.42-0.72; P < 0.001). Combining HER2 CNV and IHC improved discriminative ability, with better outcomes restricted to HER2-high/HER2 3+ subgroup. AMNESIA positivity was found in 51 (16%), with unadjusted HR = 1.35 (0.98-1.86) for PFS; 1.43 (1.00-2.03) for OS.In multivariable models, only HER2 CNV status remained significant for PFS (P < 0.001) and OS (P = 0.004). Higher ORR was significantly associated with IHC 3+ [61% vs. 34% in 2+; OR = 3.11 (1.89-5.17)] and HER2-high [59% vs. 43% in HER2-low; OR = 1.84 (1.16-2.94)], with highest OR in the top CNV quartile. These biomarkers were not associated with treatment effect of pertuzumab. CONCLUSIONS: HER2 CNV-high assessed by NGS may be associated with better ORR, PFS, and OS in a JACOB subgroup, especially if combined with HER2 3+. The negative prognostic role of AMNESIA requires further clinical validation.


Asunto(s)
Neoplasias de la Mama , Neoplasias Gástricas , Humanos , Femenino , Trastuzumab/uso terapéutico , Trastuzumab/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Variaciones en el Número de Copia de ADN , Proteínas Proto-Oncogénicas p21(ras)/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico
7.
J Exp Clin Cancer Res ; 41(1): 319, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36324182

RESUMEN

In the last two decades, clinical oncology has been revolutionized by the advent of targeted drugs. However, the efficacy of these therapies is significantly limited by primary and acquired resistance, that relies not only on cell-autonomous mechanisms but also on tumor microenvironment cues. Cancer-associated fibroblasts (CAFs) are extremely plastic cells of the tumor microenvironment. They not only produce extracellular matrix components that build up the structure of tumor stroma, but they also release growth factors, chemokines, exosomes, and metabolites that affect all tumor properties, including response to drug treatment. The contribution of CAFs to tumor progression has been deeply investigated and reviewed in several works. However, their role in resistance to anticancer therapies, and in particular to molecular therapies, has been largely overlooked. This review specifically dissects the role of CAFs in driving resistance to targeted therapies and discusses novel CAF targeted therapeutic strategies to improve patient survival.


Asunto(s)
Fibroblastos Asociados al Cáncer , Exosomas , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral , Exosomas/metabolismo
9.
J Exp Clin Cancer Res ; 41(1): 112, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351166

RESUMEN

BACKGROUND: The tyrosine kinase receptor encoded by the MET oncogene is a major player in cancer. When MET is responsible for the onset and progression of the transformed phenotype (MET-addicted cancers), an efficient block of its oncogenic activation results in potent tumor growth inhibition. METHODS: Here we describe a molecular engineered MET antibody (hOA-DN30) and validate its pharmacological activity in MET-addicted cancer models in vitro and in vivo. Pharmacokinetics and safety profile in non-human primates have also been assessed. RESULTS: hOA-DN30 efficiently impaired MET activation and the intracellular signalling cascade by dose and time dependent removal of the receptor from the cell surface (shedding). In vitro, the antibody suppressed cell growth by blocking cell proliferation and by concomitantly inducing cell death in multiple MET-addicted human tumor cell lines. In mice xenografts, hOA-DN30 induced an impressive reduction of tumor masses, with a wide therapeutic window. Moreover, the antibody showed high therapeutic efficacy against patient-derived xenografts generated from MET-addicted gastric tumors, leading to complete tumor regression and long-lasting effects after treatment discontinuation. Finally, hOA-DN30 showed a highly favorable pharmacokinetic profile and substantial tolerability in Cynomolgus monkeys. CONCLUSIONS: hOA-DN30 unique ability to simultaneously erase cell surface MET and release the 'decoy' receptor extracellular region results in a paramount MET blocking action. Its remarkable efficacy in a large number of pre-clinical models, as well as its pharmacological features and safety profile in non-human primates, strongly envisage a successful clinical application of this novel single-arm MET therapeutic antibody for the therapy of MET-addicted cancers.


Asunto(s)
Proteínas Proto-Oncogénicas c-met , Neoplasias Gástricas , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal
10.
Transl Oncol ; 15(1): 101260, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34735897

RESUMEN

Gastric cancer (GC) is frequently characterized by resistance to standard chemotherapeutic regimens and poor clinical outcomes. We aimed to identify a novel therapeutic approach using drug sensitivity testing (DST) and our computational SynerySeq pipeline. DST of GC cell lines was performed with a library of 215 Federal Drug Administration (FDA) approved compounds and identified clofarabine as a potential therapeutic agent. RNA-sequencing (RNAseq) of clofarabine treated GC cells was analyzed according to our SynergySeq pipeline and identified pictilisib as a potential synergistic agent. Clonogenic survival and Annexin V assays demonstrated increased cell death with clofarabine and pictilisib combination treatment (P<0.01). The combination induced double strand breaks (DSB) as indicated by phosphorylated H2A histone family member X (γH2AX) immunofluorescence and western blot analysis (P<0.01). Pictilisib treatment inhibited the protein kinase B (AKT) cell survival pathway and promoted a pro-apoptotic phenotype as evidenced by quantitative real time polymerase chain reaction (qRT-PCR) analysis of the B-cell lymphoma 2 (BCL2) protein family members (P<0.01). Patient derived xenograft (PDX) data confirmed that the combination is more effective in abrogating tumor growth with prolonged survival than single-agent treatment (P<0.01). The novel combination of clofarabine and pictilisib in GC promotes DNA damage and inhibits key cell survival pathways to induce cell death beyond single-agent treatment.

11.
Cancers (Basel) ; 13(16)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34439248

RESUMEN

Many phase III trials failed to demonstrate a survival benefit from the addition of molecular therapy to conventional chemotherapy for advanced and metastatic gastric cancer, and only three agents were approved by the FDA. We examined the efficacy and safety of novel drugs recently investigated. PubMed, Embase and Cochrane Library were searched for phase III randomized controlled trials published from January 2016 to December 2020. Patients in the experimental arm received molecular therapy with or without conventional chemotherapy, while those in the control arm had conventional chemotherapy alone. The primary outcomes were overall and progression-free survival. The secondary outcomes were the rate of tumor response, severe adverse effects, and quality of life. Eight studies with a total of 4223 enrolled patients were included. The overall and progression-free survival of molecular and conventional therapy were comparable. Most of these trials did not find a significant difference in tumor response rate and in the number of severe adverse effects and related deaths between the experimental and control arms. The survival benefits of molecular therapies available to date for advanced and metastatic gastric cancer are rather unclear, mostly due to inaccurate patient selection, particularly concerning oncogene amplification and copy number.

12.
Gastric Cancer ; 24(4): 897-912, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33755862

RESUMEN

BACKGROUND: Trastuzumab is the only approved targeted therapy in patients with HER2-amplified metastatic gastric cancer (GC). Regrettably, in clinical practice, only a fraction of them achieves long-term benefit from trastuzumab-based upfront strategy. To advance precision oncology, we investigated the therapeutic efficacy of different HER2-targeted strategies, in HER2 "hyper"-amplified (≥ 8 copies) tumors. METHODS: We undertook a prospective evaluation of HER2 targeting with monoclonal antibodies, tyrosine kinase inhibitors and antibody-drug conjugates, in a selected subgroup of HER2 "hyper"-amplified gastric patient-derived xenografts (PDXs), through the design of ad hoc preclinical trials. RESULTS: Despite the high level of HER2 amplification, trastuzumab elicited a partial response only in 2 out of 8 PDX models. The dual-HER2 blockade with trastuzumab plus either pertuzumab or lapatinib led to complete and durable responses in 5 (62.5%) out of 8 models, including one tumor bearing a concomitant HER2 mutation. In a resistant PDX harboring KRAS amplification, the novel antibody-drug conjugate trastuzumab deruxtecan (but not trastuzumab emtansine) overcame KRAS-mediated resistance. We also identified a HGF-mediated non-cell-autonomous mechanism of secondary resistance to anti-HER2 drugs, responsive to MET co-targeting. CONCLUSION: These preclinical randomized trials clearly indicate that in HER2-driven gastric tumors, a boosted HER2 therapeutic blockade is required for optimal efficacy, leading to complete and durable responses in most of the cases. Our results suggest that a selected subpopulation of HER2-"hyper"-amplified GC patients could strongly benefit from this strategy. Despite the negative results of clinical trials, the dual blockade should be reconsidered for patients with clearly HER2-addicted cancers.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Medicina de Precisión/métodos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inmunoconjugados/uso terapéutico , Estudios Prospectivos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Neoplasias Gástricas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancer Treat Rev ; 95: 102175, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33721595

RESUMEN

Gastric cancer (GC) represents an important contributor to the global burden of cancer, being one of the most common and deadly malignancies worldwide. According to TCGA and ACRG classifications, the microsatellite instable (MSI) group represents a significant subset of GCs and is currently in the limelight of many researches due to its favorable survival outcome in resectable stages compared to microsatellite stable tumors. MSI GCs hypermutated phenotype triggers immunosurveillance, making this molecular subgroup a promising candidate for immune checkpoint inhibitors treatment. Conversely, conflicting outcomes have been reported in chemotherapy settings. Due to the clinical relevance of these observations, in this review we report and discuss the molecular, pathological, prognostic, and predictive features of MSI gastric tumors.


Asunto(s)
Antineoplásicos/uso terapéutico , Inestabilidad de Microsatélites , Neoplasias Gástricas/tratamiento farmacológico , Animales , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
14.
Clin Cancer Res ; 27(11): 3126-3140, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33542076

RESUMEN

PURPOSE: Gastric and gastroesophageal adenocarcinomas represent the third leading cause of cancer mortality worldwide. Despite significant therapeutic improvement, the outcome of patients with advanced gastroesophageal adenocarcinoma is poor. Randomized clinical trials failed to show a significant survival benefit in molecularly unselected patients with advanced gastroesophageal adenocarcinoma treated with anti-EGFR agents. EXPERIMENTAL DESIGN: We performed analyses on four cohorts: IRCC (570 patients), Foundation Medicine, Inc. (9,397 patients), COG (214 patients), and the Fondazione IRCCS Istituto Nazionale dei Tumori (206 patients). Preclinical trials were conducted in patient-derived xenografts (PDX). RESULTS: The analysis of different gastroesophageal adenocarcinoma patient cohorts suggests that EGFR amplification drives aggressive behavior and poor prognosis. We also observed that EGFR inhibitors are active in patients with EGFR copy-number gain and that coamplification of other receptor tyrosine kinases or KRAS is associated with worse response. Preclinical trials performed on EGFR-amplified gastroesophageal adenocarcinoma PDX models revealed that the combination of an EGFR mAb and an EGFR tyrosine kinase inhibitor (TKI) was more effective than each monotherapy and resulted in a deeper and durable response. In a highly EGFR-amplified nonresponding PDX, where resistance to EGFR drugs was due to inactivation of the TSC2 tumor suppressor, cotreatment with the mTOR inhibitor everolimus restored sensitivity to EGFR inhibition. CONCLUSIONS: This study underscores EGFR as a potential therapeutic target in gastric cancer and identifies the combination of an EGFR TKI and a mAb as an effective therapeutic approach. Finally, it recognizes mTOR pathway activation as a novel mechanism of primary resistance that can be overcome by the combination of EGFR and mTOR inhibitors.See related commentary by Openshaw et al., p. 2964.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Esofágicas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Animales , Estudios de Cohortes , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Ratones , Terapia Molecular Dirigida , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Células Tumorales Cultivadas
15.
Cancers (Basel) ; 12(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333972

RESUMEN

For many decades, basic and preclinical cancer research has been based on the use of established, commercially available cell lines, originally derived from patients' samples but adapted to grow indefinitely in artificial culture conditions, and on xenograft models developed by injection of these cells in immunocompromised animals [...].

16.
Cancers (Basel) ; 12(8)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784465

RESUMEN

Melanoma cells addicted to mutated BRAF oncogene activity can be targeted by specific kinase inhibitors until they develop resistance to therapy. We observed that the expression of Galectin-1 (Gal-1), a soluble ligand of Neuropilin-1 (NRP1), is upregulated in melanoma tumor samples and melanoma cells resistant to BRAF-targeted therapy. We then demonstrated that Gal-1 is a novel driver of resistance to BRAF inhibitors in melanoma and that its activity is linked to the concomitant upregulation of the NRP1 receptor observed in drug-resistant cells. Mechanistically, Gal-1 sustains increased expression of NRP1 and EGFR in drug-resistant melanoma cells. Moreover, consistent with its role as a NRP1 ligand, Gal-1 negatively controls p27 levels, a mechanism previously found to enable EGFR upregulation in cancer cells. Finally, the combined treatment with a Gal-1 inhibitor and a NRP1 blocking drug enabled resistant melanoma cell resensitization to BRAF-targeted therapy. In summary, we found that the activation of Galectin-1/NRP1 autocrine signaling is a new mechanism conferring independence from BRAF kinase activity to oncogene-addicted melanoma cells.

17.
Updates Surg ; 72(4): 951-966, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32253687

RESUMEN

Patient-Derived Xenografts (PDXs) are, so far, the best preclinical model to validate targets and predictors of response to therapy. While subcutaneous implantation very rarely allows metastatic dissemination, orthotopic implantation (Patient-Derived Orthotopic Xenograft-PDOX) increases metastatic capability. Using a modified tool to analyze model validity, we performed a systematic review of Embase, PubMed, and Web of Science up to December 2018 to identify all original publications describing gastric cancer (GC) PDOXs. We identified ten studies of PDOX model validation from January 1981 to December 2018 that fulfilled the inclusion and exclusion criteria. Most models (70%) were derived from human GC cell lines rather than tissue fragments. In 90% of studies, the implantation was performed in the subserosal layer. Tumour engraftment rate ranged from 0 to 100%, despite the technique. Metastases were observed in 40% of PDOX models implanted into the subserosal layer, employing either cell suspension or cell line-derived tumour fragments. According to our modified model validity tool, half of the studies were defined as unclear because one or more validation criteria were not reported. Available GC PDOX models are not adequate according to our model validity tool. There is no demonstration that the submucosal site is more effective than the subserosal layer, and that tissue fragments are better than cell suspensions for successful engraftment and metastatic spread. Further studies should strictly employ model validity tools and large samples with orthotopic implant sites mirroring as much as possible the donor tumour characteristics.


Asunto(s)
Modelos Animales de Enfermedad , Metástasis de la Neoplasia/patología , Trasplante de Neoplasias/métodos , Neoplasias Gástricas , Animales , Línea Celular Tumoral , Humanos , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Neoplasias Gástricas/patología
19.
Cancer Res ; 79(22): 5884-5896, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31585941

RESUMEN

Gastric cancer is the world's third leading cause of cancer mortality. In spite of significant therapeutic improvements, the clinical outcome for patients with advanced gastric cancer is poor; thus, the identification and validation of novel targets is extremely important from a clinical point of view. We generated a wide, multilevel platform of gastric cancer models, comprising 100 patient-derived xenografts (PDX), primary cell lines, and organoids. Samples were classified according to their histology, microsatellite stability, Epstein-Barr virus status, and molecular profile. This PDX platform is the widest in an academic institution, and it includes all the gastric cancer histologic and molecular types identified by The Cancer Genome Atlas. PDX histopathologic features were consistent with those of patients' primary tumors and were maintained throughout passages in mice. Factors modulating grafting rate were histology, TNM stage, copy number gain of tyrosine kinases/KRAS genes, and microsatellite stability status. PDX and PDX-derived cells/organoids demonstrated potential usefulness to study targeted therapy response. Finally, PDX transcriptomic analysis identified a cancer cell-intrinsic microsatellite instability (MSI) signature, which was efficiently exported to gastric cancer, allowing the identification, among microsatellite stable (MSS) patients, of a subset of MSI-like tumors with common molecular aspects and significant better prognosis. In conclusion, we generated a wide gastric cancer PDX platform, whose exploitation will help identify and validate novel "druggable" targets and optimize therapeutic strategies. Moreover, transcriptomic analysis of gastric cancer PDXs allowed the identification of a cancer cell-intrinsic MSI signature, recognizing a subset of MSS patients with MSI transcriptional traits, endowed with better prognosis. SIGNIFICANCE: This study reports a multilevel platform of gastric cancer PDXs and identifies a MSI gastric signature that could contribute to the advancement of precision medicine in gastric cancer.


Asunto(s)
Neoplasias Gástricas/genética , Transcripción Genética/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/genética , Femenino , Perfilación de la Expresión Génica/métodos , Genes ras/genética , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Inestabilidad de Microsatélites , Persona de Mediana Edad , Estadificación de Neoplasias/métodos , Fenotipo , Pronóstico , Neoplasias Gástricas/patología
20.
Sci Rep ; 9(1): 3545, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837627

RESUMEN

The HER2 splice variant characterized by the deletion of exon 16 and denominated as d16HER2, is associated with HER2-positive breast cancer (BC) aggressiveness, stemness, and trastuzumab susceptibility and is considered to be a "flag" of HER2 dependence. However, with the exception of quantitative real-time PCR analysis, easily reproducible assays are still lacking to clinically detect and quantify the d16HER2 expression. Further, no data on d16HER2 expression and its potential role are available in HER2-positive gastrointestinal malignancies. Here, we used a novel RNA in situ hybridization technique (BaseScope) to discriminate d16HER2 variant expression from the wild type isoform (WTHER2) and to assess their levels across different HER2-positive histological samples. Our results demonstrate the existence of outliers, with d16HER2 mRNA high scores restricted to HER2-positive gastric cancer (GC) and colorectal cancer (CRC) coupled with increased d16HER2 expression compared with BC. Consistent with previously reported data on BC, experiments performed in HER2-positive GC patient-derived xenografts suggest that increased d16HER2 expression is associated with a clinical benefit/response to single-agent trastuzumab. Therefore, d16HER2 may be considered as a "flag" of HER2 dependence in GC and can be clinically investigated as a marker of trastuzumab susceptibility in several other HER2-driven cancers, including CRC. As a clinical proof-of-concept, we indicate that high d16HER2 mRNA scores are exclusively found in patients with a long-term benefit from trastuzumab exceeding 12 months (clinical "outliers"), and that d16HER2 expression is also increased in circulating tumor-released exosomes obtained from baseline plasma samples of long-term responders.


Asunto(s)
Neoplasias de la Mama/patología , Exones/genética , Regulación Neoplásica de la Expresión Génica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica , Humanos , Células MCF-7 , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA