Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 103(1): 308-322, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32130751

RESUMEN

Circadian organ movements are ubiquitous in plants. These rhythmic outputs are thought to be regulated by the circadian clock and auxin signalling, but the underlying mechanisms have not been clarified. Flowers of Nicotiana attenuata change their orientation during the daytime through a 140° arc to balance the need for pollinators and the protection of their reproductive organs. This rhythmic trait is under the control of the circadian clock and results from bending and re-straightening movements of the pedicel, stems that connect flowers to the inflorescence. Using an explant system that allowed pedicel growth and curvature responses to be characterized with high spatial and temporal resolution, we demonstrated that this movement is organ autonomous and mediated by auxin. Changes in the growth curvature of the pedicel are accompanied by an auxin gradient and dorsiventral asymmetry in auxin-dependent transcriptional responses; application of auxin transport inhibitors influenced the normal movements of this organ. Silencing the expression of the circadian clock component ZEITLUPE (ZTL) arrested changes in the growth curvature of the pedicel and altered auxin signalling and responses. IAA19-like, an Aux/IAA transcriptional repressor that is circadian regulated and differentially expressed between opposite tissues of the pedicel, and therefore possibly involved in the regulation of changes in organ curvature, physically interacted with ZTL. Together, these results are consistent with a direct link between the circadian clock and the auxin signalling pathway in the regulation of this rhythmic floral movement.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Flores/fisiología , Nicotiana/fisiología , Proteínas de Plantas/fisiología , Ritmo Circadiano/fisiología , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
2.
Front Mol Neurosci ; 11: 366, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356801

RESUMEN

In the vinegar fly Drosophila melanogaster, the majority of olfactory receptors mediating the detection of volatile chemicals found in their natural habitat have been functionally characterized (deorphanized) in vivo. In this process, receptors have been assigned ligands leading to either excitation or inhibition in the olfactory sensory neuron where they are expressed. In other, non-drosophilid insect species, scientists have not yet been able to compile datasets about ligand-receptor interactions anywhere near as extensive as in the model organism D. melanogaster, as genetic tools necessary for receptor deorphanization are still missing. Recently, it was discovered that exposure to artificially high concentrations of odorants leads to reliable alterations in mRNA levels of interacting odorant receptors in mammals. Analyzing receptor expression after odorant exposure can, therefore, help to identify ligand-receptor interactions in vivo without the need for other genetic tools. Transfer of the same methodology from mice to a small number of receptors in D. melanogaster resulted in a similar trend, indicating that odorant exposure induced alterations in mRNA levels are generally applicable for deorphanization of interacting chemosensory receptors. Here, we evaluated the potential of the DREAM (Deorphanization of receptors based on expression alterations in mRNA levels) technique for high-throughput deorphanization of chemosensory receptors in insect species using D. melanogaster as a model. We confirmed that in some cases the exposure of a chemosensory receptor to high concentration of its best ligand leads to measureable alterations in mRNA levels. However, unlike in mammals, we found several cases where either confirmed ligands did not induce alterations in mRNA levels of the corresponding chemosensory receptors, or where gene transcript-levels were altered even though there is no evidence for a ligand-receptor interaction. Hence, there are severe limitations to the suitability of the DREAM technique for deorphanization as a general tool to characterize olfactory receptors in insects.

3.
J Integr Plant Biol ; 59(3): 180-189, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27957809

RESUMEN

Ecological interactions between flowers and pollinators are all about timing. Flower opening/closing and scent emissions are largely synchronized with pollinator activity, and a circadian clock regulates these rhythms. However, whether the circadian clock increases a plant's reproductive success by regulating these floral rhythms remains untested. Flowers of Nicotiana attenuata, a wild tobacco, diurnally and rhythmically open, emit scent and move vertically through a 140° arc to interact with nocturnal hawkmoths. We tethered flowers to evaluate the importance of flower positions for Manduca sexta-mediated pollinations; flower position dramatically influenced pollination. We examined the pollination success of phase-shifted flowers, silenced in circadian clock genes, NaZTL, NaLHY, and NaTOC1, by RNAi. Circadian rhythms in N. attenuata flowers are responsible for altered seed set from outcrossed pollen.


Asunto(s)
Flores/fisiología , Nicotiana/fisiología , Ritmo Circadiano/fisiología , Polen/fisiología , Polinización/fisiología
4.
New Phytol ; 209(3): 1058-66, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26439540

RESUMEN

The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms.


Asunto(s)
Ritmo Circadiano/genética , Flores/genética , Flores/fisiología , Silenciador del Gen , Nicotiana/genética , Nicotiana/fisiología , Regulación de la Expresión Génica de las Plantas , Odorantes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/metabolismo , Volatilización
5.
Nat Commun ; 5: 5473, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25400039

RESUMEN

Global warming is predicted to profoundly affect plant distribution and crop yield in the near future. Higher ambient temperature can influence diverse aspects of plant growth and development. In Arabidopsis, the basic helix-loop-helix transcription factor Phytochrome-Interacting Factor 4 (PIF4) regulates temperature-induced adaptive responses by modulating auxin biosynthesis. At high temperature, PIF4 directly activates expression of YUCCA8 (YUC8), a gene encoding an auxin biosynthetic enzyme, resulting in auxin accumulation. Here we demonstrate that the RNA-binding protein FCA attenuates PIF4 activity by inducing its dissociation from the YUC8 promoter at high temperature. At 28 °C, auxin content is elevated in FCA-deficient mutants that exhibit elongated stems but reduced in FCA-overexpressing plants that exhibit reduced stem growth. We propose that the FCA-mediated regulation of YUC8 expression tunes down PIF4-induced architectural changes to achieve thermal adaptation of stem growth at high ambient temperature.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Tallos de la Planta/crecimiento & desarrollo , Proteínas de Unión al ARN/fisiología , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Calor , Oxigenasas de Función Mixta/fisiología , Tallos de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA